These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 8478679)

  • 1. A higher control center of locomotor behavior in the Drosophila brain.
    Strauss R; Heisenberg M
    J Neurosci; 1993 May; 13(5):1852-61. PubMed ID: 8478679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex.
    Strauss R; Hanesch U; Kinkelin M; Wolf R; Heisenberg M
    J Neurogenet; 1992 Sep; 8(3):125-55. PubMed ID: 1460532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mushroom bodies enhance initial motor activity in Drosophila.
    Serway CN; Kaufman RR; Strauss R; de Belle JS
    J Neurogenet; 2009; 23(1-2):173-84. PubMed ID: 19145515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locomotor control by the central complex in Drosophila-An analysis of the tay bridge mutant.
    Poeck B; Triphan T; Neuser K; Strauss R
    Dev Neurobiol; 2008 Jul; 68(8):1046-58. PubMed ID: 18446784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and environmental factors impact age-related impairment of negative geotaxis in Drosophila by altering age-dependent climbing speed.
    Rhodenizer D; Martin I; Bhandari P; Pletcher SD; Grotewiel M
    Exp Gerontol; 2008 Aug; 43(8):739-48. PubMed ID: 18515028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour.
    Godenschwege TA; Reisch D; Diegelmann S; Eberle K; Funk N; Heisenberg M; Hoppe V; Hoppe J; Klagges BR; Martin JR; Nikitina EA; Putz G; Reifegerste R; Reisch N; Rister J; Schaupp M; Scholz H; Schwärzel M; Werner U; Zars TD; Buchner S; Buchner E
    Eur J Neurosci; 2004 Aug; 20(3):611-22. PubMed ID: 15255973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations affecting the cAMP transduction pathway disrupt the centrophobism behavior.
    Lebreton S; Martin JR
    J Neurogenet; 2009; 23(1-2):225-34. PubMed ID: 19306211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central complex of Drosophila melanogaster is involved in flight control: studies on mutants and mosaics of the gene ellipsoid body open.
    Ilius M; Wolf R; Heisenberg M
    J Neurogenet; 1994 Jul; 9(3):189-206. PubMed ID: 7965387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of central parts of the brain in the control of sound production during courtship in Drosophila melanogaster.
    Popov AV; Sitnik NA; Savvateeva-Popova EV; Wolf R; Heisenberg M
    Neurosci Behav Physiol; 2003 Jan; 33(1):53-65. PubMed ID: 12617304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixation and locomotor activity are impaired by inducing tetanus toxin expression in adult Drosophila brain.
    Xiong Y; Lv H; Gong Z; Liu L
    Fly (Austin); 2010; 4(3):194-203. PubMed ID: 20657190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurogenetics of courtship and mating in Drosophila.
    Villella A; Hall JC
    Adv Genet; 2008; 62():67-184. PubMed ID: 19010254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central complex substructures are required for the maintenance of locomotor activity in Drosophila melanogaster.
    Martin JR; Raabe T; Heisenberg M
    J Comp Physiol A; 1999 Sep; 185(3):277-88. PubMed ID: 10573866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving
    Gowda SBM; Paranjpe PD; Reddy OV; Thiagarajan D; Palliyil S; Reichert H; VijayRaghavan K
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):E2115-E2124. PubMed ID: 29440493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral dissection of the Drosophila circadian multioscillator system that regulates locomotor rhythms.
    Umezaki Y; Tomioka K
    Zoolog Sci; 2008 Nov; 25(11):1146-55. PubMed ID: 19267626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Casein kinase I epsilon does not rescue double-time function in Drosophila despite evolutionarily conserved roles in the circadian clock.
    Sekine T; Yamaguchi T; Hamano K; Young MW; Shimoda M; Saez L
    J Biol Rhythms; 2008 Feb; 23(1):3-15. PubMed ID: 18258753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunocytochemical and learning studies of a Drosophila melanogaster neurological mutant, no-bridgeKS49 as an approach to the possible role of the central complex.
    Bouhouche A; Vaysse G; Corbière M
    J Neurogenet; 1993 Dec; 9(2):105-21. PubMed ID: 8126596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolytic lesions within central complex neuropils of the cockroach brain affect negotiation of barriers.
    Harley CM; Ritzmann RE
    J Exp Biol; 2010 Aug; 213(Pt 16):2851-64. PubMed ID: 20675555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophila melanogaster: behavioral analysis of neural mutants.
    Helfrich C
    J Neurogenet; 1986 Nov; 3(6):321-43. PubMed ID: 3097291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pigment dispersing factor-dependent and -independent circadian locomotor behavioral rhythms.
    Sheeba V; Sharma VK; Gu H; Chou YT; O'Dowd DK; Holmes TC
    J Neurosci; 2008 Jan; 28(1):217-27. PubMed ID: 18171939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.