These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 8478679)

  • 41. Inter-leg coordination in the control of walking speed in Drosophila.
    Wosnitza A; Bockemühl T; Dübbert M; Scholz H; Büschges A
    J Exp Biol; 2013 Feb; 216(Pt 3):480-91. PubMed ID: 23038731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic control of acute ethanol-induced behaviors in Drosophila.
    Singh CM; Heberlein U
    Alcohol Clin Exp Res; 2000 Aug; 24(8):1127-36. PubMed ID: 10968649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila.
    Wolf FW; Rodan AR; Tsai LT; Heberlein U
    J Neurosci; 2002 Dec; 22(24):11035-44. PubMed ID: 12486199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phototactic responses along a gradient of light intensities for the sibling species Drosophila melanogaster and Drosophila simulans.
    Parsons PA
    Behav Genet; 1975 Jan; 5(1):17-25. PubMed ID: 803833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuronal control of Drosophila walking direction.
    Bidaye SS; Machacek C; Wu Y; Dickson BJ
    Science; 2014 Apr; 344(6179):97-101. PubMed ID: 24700860
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Drosophila double-timeS mutation delays the nuclear accumulation of period protein and affects the feedback regulation of period mRNA.
    Bao S; Rihel J; Bjes E; Fan JY; Price JL
    J Neurosci; 2001 Sep; 21(18):7117-26. PubMed ID: 11549722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studying sensorimotor processing with physiology in behaving Drosophila.
    Seelig JD; Jayaraman V
    Int Rev Neurobiol; 2011; 99():169-89. PubMed ID: 21906540
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distinct neural circuits reflect sex, sexual maturity, and reproductive status in response to stress in Drosophila melanogaster.
    Neckameyer WS; Matsuo H
    Neuroscience; 2008 Oct; 156(4):841-56. PubMed ID: 18790015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain.
    Grima B; Chélot E; Xia R; Rouyer F
    Nature; 2004 Oct; 431(7010):869-73. PubMed ID: 15483616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Drosophila olfactory response rhythms require clock genes but not pigment dispersing factor or lateral neurons.
    Zhou X; Yuan C; Guo A
    J Biol Rhythms; 2005 Jun; 20(3):237-44. PubMed ID: 15851530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana.
    Sharma S; Thakurdas P; Sinam B; Joshi D
    Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learning and courtship in Drosophila: two stories with mutants.
    Quinn WG; Greenspan RJ
    Annu Rev Neurosci; 1984; 7():67-93. PubMed ID: 6143528
    [No Abstract]   [Full Text] [Related]  

  • 53. Characterization of Andante, a new Drosophila clock mutant, and its interactions with other clock mutants.
    Konopka RJ; Smith RF; Orr D
    J Neurogenet; 1991 Feb; 7(2-3):103-14. PubMed ID: 2030465
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A self-sustaining, light-entrainable circadian oscillator in the Drosophila brain.
    Veleri S; Brandes C; Helfrich-Förster C; Hall JC; Stanewsky R
    Curr Biol; 2003 Oct; 13(20):1758-67. PubMed ID: 14561400
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuronal control of locomotor handedness in Drosophila.
    Buchanan SM; Kain JS; de Bivort BL
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6700-5. PubMed ID: 25953337
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila.
    Kernan M; Cowan D; Zuker C
    Neuron; 1994 Jun; 12(6):1195-206. PubMed ID: 8011334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electroconvulsive seizure behavior in Drosophila: analysis of the physiological repertoire underlying a stereotyped action pattern in bang-sensitive mutants.
    Lee J; Wu CF
    J Neurosci; 2002 Dec; 22(24):11065-79. PubMed ID: 12486202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Perturbations in dopamine synthesis lead to discrete physiological effects and impact oxidative stress response in Drosophila.
    Hanna ME; Bednářová A; Rakshit K; Chaudhuri A; O'Donnell JM; Krishnan N
    J Insect Physiol; 2015 Feb; 73():11-9. PubMed ID: 25585352
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flyception: imaging brain activity in freely walking fruit flies.
    Grover D; Katsuki T; Greenspan RJ
    Nat Methods; 2016 Jul; 13(7):569-72. PubMed ID: 27183441
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Walking behavior in a circular arena modified by pulsed light stimulation in Drosophila melanogaster w
    Qiu S; Xiao C
    Physiol Behav; 2018 May; 188():227-238. PubMed ID: 29454066
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.