These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8478680)

  • 21. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips.
    Zakon H; Oestreich J; Tallarovic S; Triefenbach F
    J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sexual maturity-dependent changes in neuronal morphology in the prepacemaker nucleus of adult weakly electric knifefish, Eigenmannia.
    Zupanc GK; Heiligenberg W
    J Neurosci; 1989 Nov; 9(11):3816-27. PubMed ID: 2479726
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Afferent and efferent connections of the diencephalic prepacemaker nucleus in the weakly electric fish, Eigenmannia virescens: interactions between the electromotor system and the neuroendocrine axis.
    Wong CJ
    J Comp Neurol; 1997 Jun; 383(1):18-41. PubMed ID: 9184983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behaviors.
    Dye J; Heiligenberg W
    J Comp Physiol A; 1987 Aug; 161(2):187-200. PubMed ID: 3625572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interruption of pacemaker signals is mediated by GABAergic inhibition of the pacemaker nucleus in the African electric fish Gymnarchus niloticus.
    Zhang Y; Kawasaki M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jun; 193(6):665-75. PubMed ID: 17406874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response.
    Field CE; Petersen TA; Alves-Gomes JA; Braun CB
    Front Integr Neurosci; 2019; 13():55. PubMed ID: 31632247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative analysis of the jamming avoidance response in African and South American wave-type electric fishes.
    Kawasaki M
    Biol Bull; 1996 Aug; 191(1):103-8. PubMed ID: 8776846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chirping and asymmetric jamming avoidance responses in the electric fish
    Petzold JM; Alves-Gomes JA; Smith GT
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 30012575
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study.
    Zupanc GK
    J Neurocytol; 1991 Oct; 20(10):818-33. PubMed ID: 1783940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: detection and processing of electric signals in social communication.
    Heiligenberg W; Keller CH; Metzner W; Kawasaki M
    J Comp Physiol A; 1991 Aug; 169(2):151-64. PubMed ID: 1684205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: reading the sense of rotation in an amplitude-phase plane.
    Rose G; Heiligenberg W
    J Comp Physiol A; 1986 May; 158(5):613-24. PubMed ID: 3735159
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The development of the Jamming Avoidance Response (JAR) in Eigenmannia: an innate behavior indeed.
    Viete S; Heiligenberg W
    J Comp Physiol A; 1991 Jul; 169(1):15-23. PubMed ID: 1941715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reciprocal connections between the preglomerular nucleus and the central posterior/prepacemaker nucleus in the diencephalon of weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Horschke I
    Neuroscience; 1997 Sep; 80(2):653-67. PubMed ID: 9284365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Potential output pathways for agonistic-like responses resulting from the GABA(A) blockade of the torus semicircularis dorsalis in weakly electric fish, Gymnotus carapo.
    Teixeira Duarte T; Hoffmann A; de Souza Fim Pereira A; Aparecida Lopes CorrĂȘa S
    Brain Res; 2006 May; 1092(1):117-28. PubMed ID: 16696952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance.
    Telgkamp P; Combs N; Smith GT
    Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gating of sensory information: joint computations of phase and amplitude data in the midbrain of the electric fish, Eigenmannia.
    Heiligenberg W; Rose G
    J Comp Physiol A; 1986 Sep; 159(3):311-24. PubMed ID: 3772827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resolving competing theories for control of the jamming avoidance response: the role of amplitude modulations in electric organ discharge decelerations.
    Takizawa Y; Rose GJ; Kawasaki M
    J Exp Biol; 1999 May; 202(Pt 10):1377-86. PubMed ID: 10210678
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.