These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 8478683)

  • 41. Echo-acoustic flow dynamically modifies the cortical map of target range in bats.
    Bartenstein SK; Gerstenberg N; Vanderelst D; Peremans H; Firzlaff U
    Nat Commun; 2014 Aug; 5():4668. PubMed ID: 25131175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automatic gain control in the bat's sonar receiver and the neuroethology of echolocation.
    Kick SA; Simmons JA
    J Neurosci; 1984 Nov; 4(11):2725-37. PubMed ID: 6502201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A view of the world through the bat's ear: the formation of acoustic images in echolocation.
    Simmons JA
    Cognition; 1989 Nov; 33(1-2):155-99. PubMed ID: 2691182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of broadcast harmonics in echo delay perception by big brown bats.
    Stamper SA; Bates ME; Benedicto D; Simmons JA
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):79-89. PubMed ID: 18989677
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats.
    Hage SR; Jiang T; Berquist SW; Feng J; Metzner W
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):4063-8. PubMed ID: 23431172
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural attenuation of responses to emitted sounds in echolocating rats.
    Suga N; Schlegel P
    Science; 1972 Jul; 177(4043):82-4. PubMed ID: 4557490
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Short delays and low pulse amplitudes produce widespread activation in the target-distance processing area of auditory cortex of the mustached bat.
    Macías S; Hechavarría JC
    J Acoust Soc Am; 2016 Aug; 140(2):917. PubMed ID: 27586724
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neural coding of echo-envelope disparities in echolocating bats.
    Borina F; Firzlaff U; Wiegrebe L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):561-9. PubMed ID: 20740363
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field.
    Schul J; Matt F; von Helversen O
    Proc Biol Sci; 2000 Sep; 267(1454):1711-5. PubMed ID: 12233766
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Audiovocal interactions during development? Vocalisation in deafened young horseshoe bats vs. audition in vocalisation-impaired bats.
    Rübsamen R; Schäfer M
    J Comp Physiol A; 1990 Dec; 167(6):771-84. PubMed ID: 2086791
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Echo interval and not echo intensity drives bat flight behavior in structured corridors.
    Warnecke M; Macías S; Falk B; Moss CF
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30355612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Auditory frequency selectivity is better for expected than for unexpected sound duration.
    Wu CH; Jen PH
    Neuroreport; 2008 Jan; 19(1):127-31. PubMed ID: 18281906
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Significance of the paralemniscal tegmental area for audio-motor control in the moustached bat, Pteronotus p. parnellii: the afferent off efferent connections of the paralemniscal area.
    Schuller G; Fischer S; Schweizer H
    Eur J Neurosci; 1997 Feb; 9(2):342-55. PubMed ID: 9058054
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Echolocation-related reversal of information flow in a cortical vocalization network.
    García-Rosales F; López-Jury L; González-Palomares E; Wetekam J; Cabral-Calderín Y; Kiai A; Kössl M; Hechavarría JC
    Nat Commun; 2022 Jun; 13(1):3642. PubMed ID: 35752629
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic representation of 3D auditory space in the midbrain of the free-flying echolocating bat.
    Kothari NB; Wohlgemuth MJ; Moss CF
    Elife; 2018 Apr; 7():. PubMed ID: 29633711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Superfast Lombard response in free-flying, echolocating bats.
    Pedersen MB; Egenhardt M; Beedholm K; Skalshøi MR; Uebel AS; Hubancheva A; Koseva K; Moss CF; Luo J; Stidsholt L; Madsen PT
    Curr Biol; 2024 Jun; 34(11):2509-2516.e3. PubMed ID: 38744283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectral and temporal gating mechanisms enhance the clutter rejection in the echolocating bat, Rhinolophus rouxi.
    Neumann I; Schuller G
    J Comp Physiol A; 1991 Jul; 169(1):109-16. PubMed ID: 1941714
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Orienting responses and vocalizations produced by microstimulation in the superior colliculus of the echolocating bat, Eptesicus fuscus.
    Valentine DE; Sinha SR; Moss CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Mar; 188(2):89-108. PubMed ID: 11919691
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum.
    Ma J; Kobayasi K; Zhang S; Metzner W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 May; 192(5):535-50. PubMed ID: 16418857
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Topographic representation of vocal frequency demonstrated by microstimulation of anterior cingulate cortex in the echolocating bat, Pteronotus parnelli parnelli.
    Gooler DM; O'Neill WE
    J Comp Physiol A; 1987 Aug; 161(2):283-94. PubMed ID: 3625577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.