BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8480448)

  • 1. [The central role of the thymus in the education of T cells to neuroendocrine principles].
    Geenen V
    Verh K Acad Geneeskd Belg; 1993; 55(1):79-87. PubMed ID: 8480448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology.
    Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymic transcription of neurohypophysial and insulin-related genes: impact upon T-cell differentiation and self-tolerance.
    Hansenne I
    J Neuroendocrinol; 2005 May; 17(5):321-7. PubMed ID: 15869568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the reticulo-epithelial (RE) cell network in the immuno-neuroendocrine regulation of intrathymic lymphopoiesis.
    Bodey B; Bodey B; Siegel SE; Kaiser HE
    Anticancer Res; 2000; 20(3A):1871-88. PubMed ID: 10928121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thymus-dependent T cell tolerance of neuroendocrine functions: principles, reflections, and implications for tolerogenic/negative self-vaccination.
    Geenen V
    Ann N Y Acad Sci; 2006 Nov; 1088():284-96. PubMed ID: 17192574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network.
    Bodey B; Bodey B; Kaiser HE
    In Vivo; 1997; 11(4):351-70. PubMed ID: 9292303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The thymic repertoire of neuroendocrine-related self antigens: biological role in T-cell selection and pharmacological implications.
    Geenen V; Kecha O; Brilot F; Charlet-Renard C; Martens H
    Neuroimmunomodulation; 1999; 6(1-2):115-25. PubMed ID: 9876242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evolutionary aspects of thymic T cell education to neuroendocrine self.
    Geenen V; Benhida A; Kecha O; Achour I; Vandermissen E; Vanneste Y; Goxe B; Martens H
    Acta Haematol; 1996; 95(3-4):263-7. PubMed ID: 8677753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroendocrine control of T cell development in mammals: role of growth hormone in modulating thymocyte migration.
    Savino W
    Exp Physiol; 2007 Sep; 92(5):813-7. PubMed ID: 17720747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymic microenvironments for T-cell repertoire formation.
    Nitta T; Murata S; Ueno T; Tanaka K; Takahama Y
    Adv Immunol; 2008; 99():59-94. PubMed ID: 19117532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using thymus anatomy to dissect T cell repertoire selection.
    Laufer TM; Glimcher LH; Lo D
    Semin Immunol; 1999 Feb; 11(1):65-70. PubMed ID: 9950753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptocrine signaling in the thymus network and T cell education to neuroendocrine self-antigens.
    Geenen V; Goxe B; Martens H; Vandersmissen E; Vanneste Y; Achour I; Kecha O; Lefebvre PJ
    J Mol Med (Berl); 1995 Sep; 73(9):449-55. PubMed ID: 8528748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The thymic insulin-like growth factor axis: involvement in physiology and disease.
    Geenen V
    Horm Metab Res; 2003; 35(11-12):656-63. PubMed ID: 14710343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-affinity peptides and T-cell selection.
    Ziegler A; Müller CA; Böckmann RA; Uchanska-Ziegler B
    Trends Immunol; 2009 Feb; 30(2):53-60. PubMed ID: 19201651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptocrine signaling in the thymus network. Implications for central T-cell tolerance of neuroendocrine functions.
    Geenen V; Cormann-Goffin N; Vandersmissen E; Martens H; Benhida A; Martial J; Franchimont P
    Ann N Y Acad Sci; 1994 Nov; 741():85-99. PubMed ID: 7825830
    [No Abstract]   [Full Text] [Related]  

  • 16. Membrane translocation and relationship with MHC class I of a human thymic neurophysin-like protein.
    Geenen V; Vandersmissen E; Cormann-Goffin N; Martens H; Legros JJ; Degiovanni G; Benhida A; Martial J; Franchimont P
    Thymus; 1993 Aug; 22(1):55-66. PubMed ID: 8303778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation.
    Hansenne I; Louis C; Martens H; Dorban G; Charlet-Renard C; Peterson P; Geenen V
    Neuroimmunomodulation; 2009 Jan; 16(1):35-44. PubMed ID: 19077444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4(+) CD25(+) regulatory T cell selection.
    Caton AJ; Cozzo C; Larkin J; Lerman MA; Boesteanu A; Jordan MS
    Ann N Y Acad Sci; 2004 Dec; 1029():101-14. PubMed ID: 15681750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thymic generation and selection of CD25+CD4+ regulatory T cells: implications of their broad repertoire and high self-reactivity for the maintenance of immunological self-tolerance.
    Sakaguchi S; Hori S; Fukui Y; Sasazuki T; Sakaguchi N; Takahashi T
    Novartis Found Symp; 2003; 252():6-16; discussion 16-23, 106-14. PubMed ID: 14609209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Central function of the thymus in the recognition of neuroendocrine functions by T lymphocytes during their development].
    Geenen V; Martens H; Cormann-Goffin N; Vandersmissen E; Legros JJ; De Groote D; Defresne MP; Boniver J; Franchimont P
    Arch Int Physiol Biochim Biophys; 1993; 101(4):A19-22. PubMed ID: 7691221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.