These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8481390)

  • 1. Kinetics of the interaction of amphipathic alpha-helical peptides with phosphatidylcholines.
    McLean LR; Hagaman KA
    Biochim Biophys Acta; 1993 Apr; 1167(3):289-95. PubMed ID: 8481390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes.
    McLean LR; Hagaman KA; Owen TJ; Krstenansky JL
    Biochemistry; 1991 Jan; 30(1):31-7. PubMed ID: 1988028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examination of the peptide sequence requirements for lipid-binding. Alternative pathways for promoting the interaction of amphipathic alpha-helical peptides with phosphatidylcholine.
    McLean LR; Hagaman KA; Owen TJ; Payne MH; Davidson WS; Krstenansky JL
    Biochim Biophys Acta; 1991 Oct; 1086(1):106-14. PubMed ID: 1954237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2004 Jul; 43(27):8846-57. PubMed ID: 15236593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions.
    Mateo CR; Souto AA; Amat-Guerri F; Acuña AU
    Biophys J; 1996 Oct; 71(4):2177-91. PubMed ID: 8889194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.
    Ouellet M; Doucet JD; Voyer N; Auger M
    Biochemistry; 2007 Jun; 46(22):6597-606. PubMed ID: 17487978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer.
    Shigematsu D; Matsutani M; Furuya T; Kiyota T; Lee S; Sugihara G; Yamashita S
    Biochim Biophys Acta; 2002 Aug; 1564(1):271-80. PubMed ID: 12101022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A.
    de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA
    Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of β-peptide helices as transmembrane domains in lipid model membranes.
    Pahlke DM; Diederichsen U
    J Pept Sci; 2016 Oct; 22(10):636-641. PubMed ID: 27578420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the arrangement of tandem repeating units of class A amphipathic alpha-helixes on lipid interaction.
    Mishra VK; Palgunachari MN; Lund-Katz S; Phillips MC; Segrest JP; Anantharamaiah GM
    J Biol Chem; 1995 Jan; 270(4):1602-11. PubMed ID: 7829491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amphipathic peptide affects the lateral domain organization of lipid bilayers.
    Polozov IV; Polozova AI; Molotkovsky JG; Epand RM
    Biochim Biophys Acta; 1997 Sep; 1328(2):125-39. PubMed ID: 9315610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spectroscopic analysis for binding of amphipathic and antimicrobial model peptides containing pyrenylalanine and tryptophan to lipid bilayer.
    Lee S; Yoshida M; Mihara H; Aoyagi H; Kato T; Yamasaki N
    Biochim Biophys Acta; 1989 Sep; 984(2):174-82. PubMed ID: 2765546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific tryptophan dynamics in class A amphipathic helical peptides at a phospholipid bilayer interface.
    Clayton AH; Sawyer WH
    Biophys J; 2000 Aug; 79(2):1066-73. PubMed ID: 10920036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers.
    Hung SC; Wang W; Chan SI; Chen HM
    Biophys J; 1999 Dec; 77(6):3120-33. PubMed ID: 10585933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activation energy for insertion of transmembrane alpha-helices is dependent on membrane composition.
    Meijberg W; Booth PJ
    J Mol Biol; 2002 Jun; 319(3):839-53. PubMed ID: 12054874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.