These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 8481405)
1. Decreased catalase activity is the underlying mechanism of oxidant susceptibility in glucose-6-phosphate dehydrogenase-deficient erythrocytes. Scott MD; Wagner TC; Chiu DT Biochim Biophys Acta; 1993 Apr; 1181(2):163-8. PubMed ID: 8481405 [TBL] [Abstract][Full Text] [Related]
2. NADPH, not glutathione, status modulates oxidant sensitivity in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Scott MD; Zuo L; Lubin BH; Chiu DT Blood; 1991 May; 77(9):2059-64. PubMed ID: 2018843 [TBL] [Abstract][Full Text] [Related]
3. Erythrocyte defense against hydrogen peroxide: preeminent importance of catalase. Scott MD; Lubin BH; Zuo L; Kuypers FA J Lab Clin Med; 1991 Jul; 118(1):7-16. PubMed ID: 2066646 [TBL] [Abstract][Full Text] [Related]
4. H2O2 injury in beta thalassemic erythrocytes: protective role of catalase and the prooxidant effects of GSH. Scott MD Free Radic Biol Med; 2006 Apr; 40(7):1264-72. PubMed ID: 16545695 [TBL] [Abstract][Full Text] [Related]
6. Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Gaetani GF; Galiano S; Canepa L; Ferraris AM; Kirkman HN Blood; 1989 Jan; 73(1):334-9. PubMed ID: 2491951 [TBL] [Abstract][Full Text] [Related]
7. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Kirkman HN; Gaetani GF Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4343-7. PubMed ID: 6589599 [TBL] [Abstract][Full Text] [Related]
8. Enhanced susceptibility of erythrocytes deficient in glucose-6-phosphate dehydrogenase to alloxan/glutathione-induced decrease in red cell deformability. Liu TZ; Lin TF; Hung IJ; Wei JS; Chiu DT Life Sci; 1994; 55(3):PL55-60. PubMed ID: 8007756 [TBL] [Abstract][Full Text] [Related]
9. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence. Cheng ML; Ho HY; Wu YH; Chiu DT Free Radic Biol Med; 2004 Mar; 36(5):580-91. PubMed ID: 14980702 [TBL] [Abstract][Full Text] [Related]
10. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress. Ho HY; Cheng ML; Shiao MS; Chiu DT Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419 [TBL] [Abstract][Full Text] [Related]
11. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Gaetani GD; Parker JC; Kirkman HN Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443 [TBL] [Abstract][Full Text] [Related]
12. Increased basal oxidation of peroxiredoxin 2 and limited peroxiredoxin recycling in glucose-6-phosphate dehydrogenase-deficient erythrocytes from newborn infants. Cheah FC; Peskin AV; Wong FL; Ithnin A; Othman A; Winterbourn CC FASEB J; 2014 Jul; 28(7):3205-10. PubMed ID: 24636884 [TBL] [Abstract][Full Text] [Related]
13. The effect of BCNU and adriamycin on normal and G6PD deficient erythrocytes. Sagone AL; Burton GM Am J Hematol; 1979; 7(2):97-106. PubMed ID: 539595 [TBL] [Abstract][Full Text] [Related]
14. Pro-oxidative effects of tea and polyphenols, epigallocatechin-3-gallate and epigallocatechin, on G6PD-deficient erythrocytes in vitro. Ko CH; Li K; Ng PC; Fung KP; Li CL; Wong RP; Chui KM; Gu GJ; Yung E; Wang CC; Fok TF Int J Mol Med; 2006 Nov; 18(5):987-94. PubMed ID: 17016632 [TBL] [Abstract][Full Text] [Related]
15. Bound and unbound pyridine dinucleotides in normal and glucose-6-phosphate dehydrogenase-deficient erythrocytes. Canepa L; Ferraris AM; Miglino M; Gaetani GF Biochim Biophys Acta; 1991 May; 1074(1):101-4. PubMed ID: 2043659 [TBL] [Abstract][Full Text] [Related]
16. Failure to increase glucose consumption through the pentose-phosphate pathway results in the death of glucose-6-phosphate dehydrogenase gene-deleted mouse embryonic stem cells subjected to oxidative stress. Filosa S; Fico A; Paglialunga F; Balestrieri M; Crooke A; Verde P; Abrescia P; Bautista JM; Martini G Biochem J; 2003 Mar; 370(Pt 3):935-43. PubMed ID: 12466018 [TBL] [Abstract][Full Text] [Related]
17. Importance of glucose-6-phosphate dehydrogenase in the adaptive response to hydrogen peroxide in Saccharomyces cerevisiae. Izawa S; Maeda K; Miki T; Mano J; Inoue Y; Kimura A Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):811-7. PubMed ID: 9480895 [TBL] [Abstract][Full Text] [Related]
18. Active involvement of catalase during hemolytic crises of favism. Gaetani GF; Rolfo M; Arena S; Mangerini R; Meloni GF; Ferraris AM Blood; 1996 Aug; 88(3):1084-8. PubMed ID: 8704218 [TBL] [Abstract][Full Text] [Related]