These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 8482009)

  • 1. The independent stage-specific expression of the 18-kDa heat shock protein genes during microsporogenesis in Zea mays L.
    Atkinson BG; Raizada M; Bouchard RA; Frappier RH; Walden DB
    Dev Genet; 1993; 14(1):15-26. PubMed ID: 8482009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pollen proteomics: from stress physiology to developmental priming.
    Chaturvedi P; Ghatak A; Weckwerth W
    Plant Reprod; 2016 Jun; 29(1-2):119-32. PubMed ID: 27271282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development.
    Giorno F; Wolters-Arts M; Mariani C; Rieu I
    Plants (Basel); 2013 Jul; 2(3):489-506. PubMed ID: 27137389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance.
    Bokszczanin KL; ; Fragkostefanakis S
    Front Plant Sci; 2013; 4():315. PubMed ID: 23986766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small heat shock protein LimHSP16.45 protects pollen mother cells and tapetal cells against extreme temperatures during late zygotene to pachytene stages of meiotic prophase I in David Lily.
    Mu C; Wang S; Zhang S; Pan J; Chen N; Li X; Wang Z; Liu H
    Plant Cell Rep; 2011 Oct; 30(10):1981-9. PubMed ID: 21678060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers.
    Giorno F; Wolters-Arts M; Grillo S; Scharf KD; Vriezen WH; Mariani C
    J Exp Bot; 2010; 61(2):453-62. PubMed ID: 19854799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties.
    Siddique M; Gernhard S; von Koskull-Döring P; Vierling E; Scharf KD
    Cell Stress Chaperones; 2008; 13(2):183-97. PubMed ID: 18369739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein.
    Mamedov TG; Shono M
    J Plant Res; 2008 Mar; 121(2):235-43. PubMed ID: 18288562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small heat shock proteins are differentially regulated during pollen development and following heat stress in tobacco.
    Volkov RA; Panchuk II; Schöffl F
    Plant Mol Biol; 2005 Mar; 57(4):487-502. PubMed ID: 15821976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexity and Genetic Variability of Heat-Shock Protein Expression in Isolated Maize Microspores.
    Magnard JL; Vergne P; Dumas C
    Plant Physiol; 1996 Aug; 111(4):1085-1096. PubMed ID: 12226349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bradyzoite development in Toxoplasma gondii and the hsp70 stress response.
    Weiss LM; Ma YF; Takvorian PM; Tanowitz HB; Wittner M
    Infect Immun; 1998 Jul; 66(7):3295-302. PubMed ID: 9632598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein.
    Medina-Escobar N; Cárdenas J; Muñoz-Blanco J; Caballero JL
    Plant Mol Biol; 1998 Jan; 36(1):33-42. PubMed ID: 9484460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation of some maize small heat shock proteins is initiated from internal in-frame AUGs.
    Frappier JR; Walden DB; Atkinson BG
    Genetics; 1998 Jan; 148(1):471-7. PubMed ID: 9475756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and native structure of cytosolic class II small heat-shock proteins.
    Helm KW; Lee GJ; Vierling E
    Plant Physiol; 1997 Aug; 114(4):1477-85. PubMed ID: 9276957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the native forms of the 90 kDa heat shock protein (hsp90) in plant cytosolic extracts.
    Krishna P; Reddy RK; Sacco M; Frappier JR; Felsheim RF
    Plant Mol Biol; 1997 Feb; 33(3):457-66. PubMed ID: 9049266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos.
    Jobin MP; Delmas F; Garmyn D; Diviès C; Guzzo J
    Appl Environ Microbiol; 1997 Feb; 63(2):609-14. PubMed ID: 9023938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter.
    Coca MA; Almoguera C; Thomas TL; Jordano J
    Plant Mol Biol; 1996 Jul; 31(4):863-76. PubMed ID: 8806416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation.
    Prändl R; Schöffl F
    Plant Mol Biol; 1996 Apr; 31(1):157-62. PubMed ID: 8704149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The molecular evolution of the small heat-shock proteins in plants.
    Waters ER
    Genetics; 1995 Oct; 141(2):785-95. PubMed ID: 8647410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating substitution rates in ribosomal RNA genes.
    Rzhetsky A
    Genetics; 1995 Oct; 141(2):771-83. PubMed ID: 8647409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.