These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 8482343)

  • 1. Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule.
    Hwang SP; Lennarz WJ
    Exp Cell Res; 1993 Apr; 205(2):383-7. PubMed ID: 8482343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
    Ingersoll EP; Wilt FH
    Dev Biol; 1998 Apr; 196(1):95-106. PubMed ID: 9527883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells.
    Ingersoll EP; McDonald KL; Wilt FH
    J Exp Zool A Comp Exp Biol; 2003 Dec; 300(2):101-12. PubMed ID: 14648670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of primary mesenchyme cell patterning by misregulated ectodermal expression of SpMsx in sea urchin embryos.
    Tan H; Ransick A; Wu H; Dobias S; Liu YH; Maxson R
    Dev Biol; 1998 Sep; 201(2):230-46. PubMed ID: 9740661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular control over spicule formation in sea urchin embryos: A structural approach.
    Beniash E; Addadi L; Weiner S
    J Struct Biol; 1999 Mar; 125(1):50-62. PubMed ID: 10196116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of spicule matrix proteins in the sea urchin embryo during normal and experimentally altered spiculogenesis.
    Urry LA; Hamilton PC; Killian CE; Wilt FH
    Dev Biol; 2000 Sep; 225(1):201-13. PubMed ID: 10964475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo.
    Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR
    Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
    Hodor PG; Ettensohn CA
    Dev Biol; 1998 Jul; 199(1):111-24. PubMed ID: 9676196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion.
    Saitoh M; Kuroda R; Muranaka Y; Uto N; Murai J; Kuroda H
    Dev Growth Differ; 2010 Dec; 52(9):735-46. PubMed ID: 21158753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
    Peled-Kamar M; Hamilton P; Wilt FH
    Exp Cell Res; 2002 Jan; 272(1):56-61. PubMed ID: 11740865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of competence in cultured sea urchin micromeres.
    Page L; Benson S
    Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells.
    Iwata M; Nakano E
    Cell Differ; 1985 Jul; 17(1):57-62. PubMed ID: 4028164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunogold detection of glycoprotein antigens in sea urchin embryos.
    Benson NC; Benson SC; Wilt F
    Am J Anat; 1989; 185(2-3):177-82. PubMed ID: 2773811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin.
    Carson DD; Farach MC; Earles DS; Decker GL; Lennarz WJ
    Cell; 1985 Jun; 41(2):639-48. PubMed ID: 3986913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of sea urchin primary mesenchyme cells and spicules during biomineralization in vitro.
    Decker GL; Morrill JB; Lennarz WJ
    Development; 1987 Oct; 101(2):297-312. PubMed ID: 3446478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endoderm differentiation in vitro identifies a transitional period for endoderm ontogeny in the sea urchin embryo.
    Chen SW; Wessel GM
    Dev Biol; 1996 Apr; 175(1):57-65. PubMed ID: 8608869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Looking into the sea urchin embryo you can see local cell interactions regulate morphogenesis.
    Wilt FH
    Bioessays; 1997 Aug; 19(8):665-8. PubMed ID: 9264247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus.
    Illies MR; Peeler MT; Dechtiaruk AM; Ettensohn CA
    Dev Genes Evol; 2002 Oct; 212(9):419-31. PubMed ID: 12373587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix and mineral in the sea urchin larval skeleton.
    Wilt FH
    J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.