These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 8482353)

  • 1. Chondrogenesis in chick limb bud mesodermal cells: reciprocal modulation by activin and inhibin.
    Chen P; Yu YM; Reddi AH
    Exp Cell Res; 1993 May; 206(1):119-27. PubMed ID: 8482353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM.
    Jiang TX; Yi JR; Ying SY; Chuong CM
    Dev Biol; 1993 Feb; 155(2):545-57. PubMed ID: 7679361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro.
    Luyten FP; Chen P; Paralkar V; Reddi AH
    Exp Cell Res; 1994 Feb; 210(2):224-9. PubMed ID: 8299720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming growth factor-beta and bone morphogenetic protein-2 act by distinct mechanisms to promote chick limb cartilage differentiation in vitro.
    Roark EF; Greer K
    Dev Dyn; 1994 Jun; 200(2):103-16. PubMed ID: 7919498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive cellular modulation of chondrogenic differentiation in vitro by subpopulations of chick embryonic calvarial cells.
    Wong M; Tuan RS
    Dev Biol; 1995 Jan; 167(1):130-47. PubMed ID: 7851637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol exposure stimulates cartilage differentiation by embryonic limb mesenchyme cells.
    Kulyk WM; Hoffman LM
    Exp Cell Res; 1996 Mar; 223(2):290-300. PubMed ID: 8601406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heparan sulfate proteoglycans including syndecan-3 modulate BMP activity during limb cartilage differentiation.
    Fisher MC; Li Y; Seghatoleslami MR; Dealy CN; Kosher RA
    Matrix Biol; 2006 Jan; 25(1):27-39. PubMed ID: 16226436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo.
    Stern CD; Yu RT; Kakizuka A; Kintner CR; Mathews LS; Vale WW; Evans RM; Umesono K
    Dev Biol; 1995 Nov; 172(1):192-205. PubMed ID: 7589799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro.
    Tim Yoon S; Su Kim K; Li J; Soo Park J; Akamaru T; Elmer WA; Hutton WC
    Spine (Phila Pa 1976); 2003 Aug; 28(16):1773-80. PubMed ID: 12923462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells.
    Chimal-Monroy J; Díaz de León L
    Int J Dev Biol; 1997 Feb; 41(1):91-102. PubMed ID: 9074941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies.
    Seghatoleslami MR; Kosher RA
    Dev Dyn; 1996 Sep; 207(1):114-9. PubMed ID: 8875081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cartilage cell differentiation: review.
    von der Mark K; Conrad G
    Clin Orthop Relat Res; 1979; (139):185-205. PubMed ID: 378496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro.
    Delise AM; Tuan RS
    Dev Dyn; 2002 Oct; 225(2):195-204. PubMed ID: 12242719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal regulation of activin A and inhibin B by interleukin-1 (IL-1) and follicle-stimulating hormone (FSH) in rat Sertoli cells in vitro.
    Okuma Y; Saito K; O'Connor AE; Phillips DJ; de Kretser DM; Hedger MP
    J Endocrinol; 2005 Apr; 185(1):99-110. PubMed ID: 15817831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chick limb bud mesodermal cell chondrogenesis: inhibition by isoforms of platelet-derived growth factor and reversal by recombinant bone morphogenetic protein.
    Chen P; Carrington JL; Paralkar VM; Pierce GF; Reddi AH
    Exp Cell Res; 1992 May; 200(1):110-7. PubMed ID: 1314187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential progression of the differentiation program by bone morphogenetic protein-2 in chondrogenic cell line ATDC5.
    Shukunami C; Ohta Y; Sakuda M; Hiraki Y
    Exp Cell Res; 1998 May; 241(1):1-11. PubMed ID: 9633508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of transforming growth factor-alpha and epidermal growth factor in chick limb development.
    Dealy CN; Scranton V; Cheng HC
    Dev Biol; 1998 Oct; 202(1):43-55. PubMed ID: 9758702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2.
    Chen P; Carrington JL; Hammonds RG; Reddi AH
    Exp Cell Res; 1991 Aug; 195(2):509-15. PubMed ID: 2070831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in pituitary expression of mRNAs encoding the putative inhibin co-receptor (betaglycan) and type-I and type-II activin receptors during the chicken ovulatory cycle.
    Lovell TM; Knight PG; Gladwell RT
    J Endocrinol; 2005 Sep; 186(3):447-55. PubMed ID: 16135664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.