These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 8482681)

  • 1. Skeletal muscle calcium-activated neutral protease (calpain) with exercise.
    Belcastro AN
    J Appl Physiol (1985); 1993 Mar; 74(3):1381-6. PubMed ID: 8482681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GDE5/Gpcpd1 activity determines phosphatidylcholine composition in skeletal muscle and regulates contractile force in mice.
    Aisyah R; Ohshima N; Watanabe D; Nakagawa Y; Sakuma T; Nitschke F; Nakamura M; Sato K; Nakahata K; Yokoyama C; Marchioni CR; Kumrungsee T; Shimizu T; Sotomaru Y; Takeo T; Nakagata N; Izumi T; Miura S; Minassian BA; Yamamoto T; Wada M; Yanaka N
    Commun Biol; 2024 May; 7(1):604. PubMed ID: 38769369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review.
    Wilburn D; Ismaeel A; Machek S; Fletcher E; Koutakis P
    Ageing Res Rev; 2021 Nov; 71():101463. PubMed ID: 34534682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical response of skeletal muscle to eccentric contractions.
    Lieber RL
    J Sport Health Sci; 2018 Jul; 7(3):294-309. PubMed ID: 30356666
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular mechanism of eccentric-induced muscle injury and its relationship with sarcomere heterogeneity.
    Choi SJ
    J Exerc Rehabil; 2014 Aug; 10(4):200-4. PubMed ID: 25210693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific training improves skeletal muscle mitochondrial calcium homeostasis after eccentric exercise.
    Rattray B; Thompson M; Ruell P; Caillaud C
    Eur J Appl Physiol; 2013 Feb; 113(2):427-36. PubMed ID: 22777498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desmin and α-actinin-2 content in rat soleus muscle in the dynamics of gravitational unloading and subsequent reloading.
    Mirzoev TM; Shenkman BS; Ushakov IB; Ogneva IV
    Dokl Biochem Biophys; 2012; 444():144-6. PubMed ID: 22772996
    [No Abstract]   [Full Text] [Related]  

  • 8. Eccentric contraction-induced injury to type I, IIa, and IIa/IIx muscle fibers of elderly adults.
    Choi SJ; Lim JY; Nibaldi EG; Phillips EM; Frontera WR; Fielding RA; Widrick JJ
    Age (Dordr); 2012 Feb; 34(1):215-26. PubMed ID: 21431924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-body vibration and the prevention and treatment of delayed-onset muscle soreness.
    Aminian-Far A; Hadian MR; Olyaei G; Talebian S; Bakhtiary AH
    J Athl Train; 2011; 46(1):43-9. PubMed ID: 21214349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of estrogen on skeletal muscle: sex matters.
    Enns DL; Tiidus PM
    Sports Med; 2010 Jan; 40(1):41-58. PubMed ID: 20020786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle.
    Vissing K; Overgaard K; Nedergaard A; Fredsted A; Schjerling P
    Eur J Appl Physiol; 2008 Jun; 103(3):323-32. PubMed ID: 18340456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remodeling of ryanodine receptor complex causes "leaky" channels: a molecular mechanism for decreased exercise capacity.
    Bellinger AM; Reiken S; Dura M; Murphy PW; Deng SX; Landry DW; Nieman D; Lehnart SE; Samaru M; LaCampagne A; Marks AR
    Proc Natl Acad Sci U S A; 2008 Feb; 105(6):2198-202. PubMed ID: 18268335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stressed out: the skeletal muscle ryanodine receptor as a target of stress.
    Bellinger AM; Mongillo M; Marks AR
    J Clin Invest; 2008 Feb; 118(2):445-53. PubMed ID: 18246195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calpain/calpastatin activities and substrate depletion patterns during hindlimb unweighting and reweighting in skeletal muscle.
    Enns DL; Raastad T; Ugelstad I; Belcastro AN
    Eur J Appl Physiol; 2007 Jul; 100(4):445-55. PubMed ID: 17429681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ activation of diffusible and bound pools of mu-calpain in rat skeletal muscle.
    Murphy RM; Verburg E; Lamb GD
    J Physiol; 2006 Oct; 576(Pt 2):595-612. PubMed ID: 16857710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes.
    Allen DG; Whitehead NP; Yeung EW
    J Physiol; 2005 Sep; 567(Pt 3):723-35. PubMed ID: 16002444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation-induced Ca2+ influx and muscle damage in the rat: loss of membrane integrity and impaired force recovery.
    Mikkelsen UR; Fredsted A; Gissel H; Clausen T
    J Physiol; 2004 Aug; 559(Pt 1):271-85. PubMed ID: 15218060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of massage on delayed onset muscle soreness.
    Hilbert JE; Sforzo GA; Swensen T
    Br J Sports Med; 2003 Feb; 37(1):72-5. PubMed ID: 12547748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse.
    Tidball JG; Spencer MJ
    J Physiol; 2002 Dec; 545(3):819-28. PubMed ID: 12482888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contraction-induced muscle damage in humans following calcium channel blocker administration.
    Beaton LJ; Tarnopolsky MA; Phillips SM
    J Physiol; 2002 Nov; 544(3):849-59. PubMed ID: 12411528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.