BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8483381)

  • 1. Disturbances in autoregulatory responses of rat pial arteries by sulfonylureas.
    Lee WS; Kwon YJ; Yu SS; Rhim BY; Hong KW
    Life Sci; 1993; 52(19):1527-34. PubMed ID: 8483381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
    Wang Q; Bryan RM; Pelligrino DA
    Brain Res; 1998 May; 793(1-2):187-96. PubMed ID: 9630623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of activation of calcium-sensitive K+ channels in NO- and hypoxia-induced pial artery vasodilation.
    Armstead WM
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1785-90. PubMed ID: 9139963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of KATP channels in the regulation of rat dura and pia artery diameter.
    Gozalov A; Petersen KA; Mortensen C; Jansen-Olesen I; Klaerke D; Olesen J
    Cephalalgia; 2005 Apr; 25(4):249-60. PubMed ID: 15773822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of K ATP channels in cephalic vasodilatation induced by calcitonin gene-related peptide, nitric oxide, and transcranial electrical stimulation in the rat.
    Gozalov A; Jansen-Olesen I; Klaerke D; Olesen J
    Headache; 2008 Sep; 48(8):1202-13. PubMed ID: 18647185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of ATP-sensitive potassium channels in brain stem circulation during hypotension.
    Toyoda K; Fujii K; Ibayashi S; Kitazono T; Nagao T; Fujishima M
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1342-6. PubMed ID: 9321824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of adrenomedullin-induced dilatation of cerebral arterioles.
    Lang MG; PaternĂ² R; Faraci FM; Heistad DD
    Stroke; 1997 Jan; 28(1):181-5. PubMed ID: 8996509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological evidence that calcitonin gene-related peptide is implicated in cerebral autoregulation.
    Hong KW; Pyo KM; Lee WS; Yu SS; Rhim BY
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H11-6. PubMed ID: 7508205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles.
    Hong KW; Yoo SE; Yu SS; Lee JY; Rhim BY
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H317-23. PubMed ID: 8769767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of vasodilation of cerebral vessels induced by the potassium channel opener nicorandil in canine in vivo experiments.
    Ishiyama T; Dohi S; Iida H; Akamatsu S; Ohta S; Shimonaka H
    Stroke; 1994 Aug; 25(8):1644-50. PubMed ID: 8042218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of ATP-sensitive K+ channels in cGMP-mediated pial artery vasodilation.
    Armstead WM
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H423-6. PubMed ID: 8779815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon monoxide contributes to hypotension-induced cerebrovascular vasodilation in piglets.
    Kanu A; Whitfield J; Leffler CW
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2409-14. PubMed ID: 16751286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dilation of perforating arteries in rat brain in response to systemic hypotension is more sensitive and pronounced than that of pial arterioles: simultaneous visualization of perforating and cortical vessels by in-vivo microangiography.
    Yoshino H; Sakurai T; Oizumi XS; Akisaki T; Wang X; Yokono K; Kondoh T; Kohmura E; Umentani K
    Microvasc Res; 2009 Mar; 77(2):230-3. PubMed ID: 18992262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicorandil protects pial arterioles from endothelial dysfunction induced by smoking in rats.
    Iwata K; Iida H; Iida M; Takenaka M; Tanabe K; Fukuoka N; Uchida M
    J Neurosurg Anesthesiol; 2013 Oct; 25(4):392-8. PubMed ID: 23660509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. G protein activation elicits cerebrovasodilation through interaction with K(ATP) and K(Ca) channels.
    Armstead WM
    Brain Res; 2002 Dec; 957(2):369-72. PubMed ID: 12445981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of vasodilation and CBF autoregulation by genistein in rat pial artery after brain injury.
    Hong KW; Shin HK; Kim CD; Lee WS; Rhim BY
    Am J Physiol Heart Circ Physiol; 2001 Jul; 281(1):H308-15. PubMed ID: 11406498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelin rather than 20-HETE contributes to loss of pial arteriolar dilation during focal cerebral ischemia with and without polymeric hemoglobin transfusion.
    Cao S; Wang LC; Kwansa H; Roman RJ; Harder DR; Koehler RC
    Am J Physiol Regul Integr Comp Physiol; 2009 May; 296(5):R1412-8. PubMed ID: 19261918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow modulation of pressure-sensitive tone in rat pial arterioles: role of the endothelium.
    Ward ME; Yan L; Kelly S; Angle MR
    Anesthesiology; 2000 Dec; 93(6):1456-64. PubMed ID: 11149441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.