BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 8483459)

  • 1. Molecular and genetic characterization of SPT4, a gene important for transcription initiation in Saccharomyces cerevisiae.
    Malone EA; Fassler JS; Winston F
    Mol Gen Genet; 1993 Mar; 237(3):449-59. PubMed ID: 8483459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae.
    Hartzog GA; Wada T; Handa H; Winston F
    Genes Dev; 1998 Feb; 12(3):357-69. PubMed ID: 9450930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae.
    Swanson MS; Winston F
    Genetics; 1992 Oct; 132(2):325-36. PubMed ID: 1330823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae.
    Basrai MA; Kingsbury J; Koshland D; Spencer F; Hieter P
    Mol Cell Biol; 1996 Jun; 16(6):2838-47. PubMed ID: 8649393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in the SPT4, SPT5, and SPT6 genes alter transcription of a subset of histone genes in Saccharomyces cerevisiae.
    Compagnone-Post PA; Osley MA
    Genetics; 1996 Aug; 143(4):1543-54. PubMed ID: 8844144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of the human and mouse homologues (SUPT4H and Supt4h) of the yeast SPT4 gene.
    Chiang PW; Wang SQ; Smithivas P; Song WJ; Crombez E; Akhtar A; Im R; Greenfield J; Ramamoorthy S; Van Keuren M; Blackburn CC; Tsai CH; Kurnit DM
    Genomics; 1996 Jun; 34(3):368-75. PubMed ID: 8786137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential intrachromosomal hyper-recombination phenotype of spt4 and spt6 mutants of S. cerevisiae.
    Malagón F; Aguilera A
    Curr Genet; 1996 Jul; 30(2):101-6. PubMed ID: 8660457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat.
    Swanson MS; Malone EA; Winston F
    Mol Cell Biol; 1991 Jun; 11(6):3009-19. PubMed ID: 1840633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SPT6 gene is essential for growth and is required for delta-mediated transcription in Saccharomyces cerevisiae.
    Clark-Adams CD; Winston F
    Mol Cell Biol; 1987 Feb; 7(2):679-86. PubMed ID: 3029564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus.
    Swanson MS; Carlson M; Winston F
    Mol Cell Biol; 1990 Sep; 10(9):4935-41. PubMed ID: 2201908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster.
    Kaplan CD; Morris JR; Wu C; Winston F
    Genes Dev; 2000 Oct; 14(20):2623-34. PubMed ID: 11040216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5.
    Meyer PA; Li S; Zhang M; Yamada K; Takagi Y; Hartzog GA; Fu J
    Mol Cell Biol; 2015 Oct; 35(19):3354-69. PubMed ID: 26217010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular evidence for a positive role of Spt4 in transcription elongation.
    Rondón AG; García-Rubio M; González-Barrera S; Aguilera A
    EMBO J; 2003 Feb; 22(3):612-20. PubMed ID: 12554661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5.
    Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A
    Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae.
    Hartzog GA; Basrai MA; Ricupero-Hovasse SL; Hieter P; Winston F
    Mol Cell Biol; 1996 Jun; 16(6):2848-56. PubMed ID: 8649394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional analysis of a Kluyveromyces lactis homologue of the SPT4 gene of Saccharomyces cerevisiae.
    Hikkel I; Gbelská Y; Subík J
    Curr Genet; 1998 Dec; 34(5):375-8. PubMed ID: 9871119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex.
    Schwer B; Schneider S; Pei Y; Aronova A; Shuman S
    RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SPT10 and SPT21 genes of Saccharomyces cerevisiae.
    Natsoulis G; Winston F; Boeke JD
    Genetics; 1994 Jan; 136(1):93-105. PubMed ID: 8138180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.