BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 8483946)

  • 1. PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator.
    Ostrovsky de Spicer P; Maloy S
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4295-8. PubMed ID: 8483946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium.
    Surber MW; Maloy S
    Biochim Biophys Acta; 1999 Sep; 1421(1):5-18. PubMed ID: 10561467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline dehydrogenase activity of the transcriptional repressor PutA is required for induction of the put operon by proline.
    Muro-Pastor AM; Maloy S
    J Biol Chem; 1995 Apr; 270(17):9819-27. PubMed ID: 7730362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive.
    Muro-Pastor AM; Ostrovsky P; Maloy S
    J Bacteriol; 1997 Apr; 179(8):2788-91. PubMed ID: 9098084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The PutA protein of Salmonella typhimurium catalyzes the two steps of proline degradation via a leaky channel.
    Surber MW; Maloy S
    Arch Biochem Biophys; 1998 Jun; 354(2):281-7. PubMed ID: 9637737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of proline utilization in Salmonella typhimurium: characterization of put::Mu d(Ap, lac) operon fusions.
    Maloy SR; Roth JR
    J Bacteriol; 1983 May; 154(2):561-8. PubMed ID: 6302076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction.
    Zhang W; Zhou Y; Becker DF
    Biochemistry; 2004 Oct; 43(41):13165-74. PubMed ID: 15476410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli.
    Zhu W; Becker DF
    Biochemistry; 2003 May; 42(18):5469-77. PubMed ID: 12731889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro.
    Ostrovsky de Spicer P; O'Brien K; Maloy S
    J Bacteriol; 1991 Jan; 173(1):211-9. PubMed ID: 1987118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the putA gene encoding proline dehydrogenase from Rhodobacter capsulatus is independent of NtrC regulation but requires an Lrp-like activator protein.
    Keuntje B; Masepohl B; Klipp W
    J Bacteriol; 1995 Nov; 177(22):6432-9. PubMed ID: 7592417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions.
    Becker DF; Thomas EA
    Biochemistry; 2001 Apr; 40(15):4714-21. PubMed ID: 11294639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein phosphorylation on serine, threonine, and tyrosine residues modulates membrane-protein interactions and transcriptional regulation in Salmonella typhimurium.
    Ostrovsky PC; Maloy S
    Genes Dev; 1995 Aug; 9(16):2034-41. PubMed ID: 7544316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proline catabolism by Pseudomonas putida: cloning, characterization, and expression of the put genes in the presence of root exudates.
    VĂ­lchez S; Molina L; Ramos C; Ramos JL
    J Bacteriol; 2000 Jan; 182(1):91-9. PubMed ID: 10613867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline.
    Brown ED; Wood JM
    J Biol Chem; 1993 Apr; 268(12):8972-9. PubMed ID: 8473341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Divergent structure and regulatory mechanism of proline catabolic systems: characterization of the putAP proline catabolic operon of Pseudomonas aeruginosa PAO1 and its regulation by PruR, an AraC/XylS family protein.
    Nakada Y; Nishijyo T; Itoh Y
    J Bacteriol; 2002 Oct; 184(20):5633-40. PubMed ID: 12270821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the put operon in Salmonella typhimurium: characterization of promoter and operator mutations.
    Hahn DR; Maloy SR
    Genetics; 1986 Nov; 114(3):687-703. PubMed ID: 3539694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, function, and mechanism of proline utilization A (PutA).
    Liu LK; Becker DF; Tanner JJ
    Arch Biochem Biophys; 2017 Oct; 632():142-157. PubMed ID: 28712849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Vibrio vulnificus putAP operon, encoding proline dehydrogenase and proline permease, and its differential expression in response to osmotic stress.
    Lee JH; Park NY; Lee MH; Choi SH
    J Bacteriol; 2003 Jul; 185(13):3842-52. PubMed ID: 12813078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli.
    Zhou Y; Zhu W; Bellur PS; Rewinkel D; Becker DF
    Amino Acids; 2008 Nov; 35(4):711-8. PubMed ID: 18324349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.