These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha-helices. Rojkova AM; Galkin AG; Kulakova LB; Serov AE; Savitsky PA; Fedorchuk VV; Tishkov VI FEBS Lett; 1999 Feb; 445(1):183-8. PubMed ID: 10069397 [TBL] [Abstract][Full Text] [Related]
4. Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Serov AE; Popova AS; Fedorchuk VV; Tishkov VI Biochem J; 2002 Nov; 367(Pt 3):841-7. PubMed ID: 12144528 [TBL] [Abstract][Full Text] [Related]
5. [Directed mutagenesis of bacterial formate dehydrogenase: the role of Cys-255 in the catalysis and stability of the enzyme]. Tishkov VI; Galkin AG; Egorova OA; Marchenko GN; Tsygankov IuD; Egorov AM Dokl Akad Nauk; 1993 Jan; 328(3):407-10. PubMed ID: 8481693 [No Abstract] [Full Text] [Related]
6. High resolution structures of holo and apo formate dehydrogenase. Lamzin VS; Dauter Z; Popov VO; Harutyunyan EH; Wilson KS J Mol Biol; 1994 Feb; 236(3):759-85. PubMed ID: 8114093 [TBL] [Abstract][Full Text] [Related]
7. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations. Alekseeva AA; Serenko AA; Kargov IS; Savin SS; Kleymenov SY; Tishkov VI Protein Eng Des Sel; 2012 Nov; 25(11):781-8. PubMed ID: 23100543 [TBL] [Abstract][Full Text] [Related]
8. Role of a Structurally Equivalent Phenylalanine Residue in Catalysis and Thermal Stability of Formate Dehydrogenases from Different Sources. Tishkov VI; Goncharenko KV; Alekseeva AA; Kleymenov SY; Savin SS Biochemistry (Mosc); 2015 Dec; 80(13):1690-700. PubMed ID: 26878574 [TBL] [Abstract][Full Text] [Related]
9. Protein engineering of formate dehydrogenase. Tishkov VI; Popov VO Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445 [TBL] [Abstract][Full Text] [Related]
10. Structures of the apo and holo forms of formate dehydrogenase from the bacterium Moraxella sp. C-1: towards understanding the mechanism of the closure of the interdomain cleft. Shabalin IG; Filippova EV; Polyakov KM; Sadykhov EG; Safonova TN; Tikhonova TV; Tishkov VI; Popov VO Acta Crystallogr D Biol Crystallogr; 2009 Dec; 65(Pt 12):1315-25. PubMed ID: 19966418 [TBL] [Abstract][Full Text] [Related]
11. Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. Slusarczyk H; Felber S; Kula MR; Pohl M Eur J Biochem; 2000 Mar; 267(5):1280-9. PubMed ID: 10691964 [TBL] [Abstract][Full Text] [Related]
16. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Graentzdoerffer A; Rauh D; Pich A; Andreesen JR Arch Microbiol; 2003; 179(2):116-30. PubMed ID: 12560990 [TBL] [Abstract][Full Text] [Related]
17. Effect of interactions between amino acid residues 43 and 61 on thermal stability of bacterial formate dehydrogenases. Fedorchuk VV; Galkin AG; Yasny IE; Kulakova LB; Rojkova AM; Filippova AA; Tishkov VI Biochemistry (Mosc); 2002 Oct; 67(10):1145-51. PubMed ID: 12460112 [TBL] [Abstract][Full Text] [Related]
19. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
20. Site-directed mutagenesis of the essential arginine of the formate dehydrogenase active centre. Galkin AG; Kutsenko AS; Bajulina NP; Esipova NG; Lamzin VS; Mesentsev AV; Shelukho DV; Tikhonova TV; Tishkov VI; Ustinnikova TB; Popov VO Biochim Biophys Acta; 2002 Jan; 1594(1):136-49. PubMed ID: 11825616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]