BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8485102)

  • 1. Hemicelluloses as structure regulators in the aggregation of native cellulose.
    Atalla RH; Hackney JM; Uhlin I; Thompson NS
    Int J Biol Macromol; 1993 Apr; 15(2):109-12. PubMed ID: 8485102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition of plant cell walls.
    Heredia A; Jiménez A; Guillén R
    Z Lebensm Unters Forsch; 1995; 200(1):24-31. PubMed ID: 7732730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks.
    Berglund J; Mikkelsen D; Flanagan BM; Dhital S; Gaunitz S; Henriksson G; Lindström ME; Yakubov GE; Gidley MJ; Vilaplana F
    Nat Commun; 2020 Sep; 11(1):4692. PubMed ID: 32943624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.
    Wang T; Yang H; Kubicki JD; Hong M
    Biomacromolecules; 2016 Jun; 17(6):2210-22. PubMed ID: 27192562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Acetobacter cellulose composites in the hydrated state.
    Astley OM; Chanliaud E; Donald AM; Gidley MJ
    Int J Biol Macromol; 2001 Oct; 29(3):193-202. PubMed ID: 11589972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting the contribution of ATR-FTIR spectroscopy to characterize plant cell wall polysaccharides.
    Liu X; Renard CMGC; Bureau S; Le Bourvellec C
    Carbohydr Polym; 2021 Jun; 262():117935. PubMed ID: 33838812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review.
    Gao Y; Guo M; Wang D; Zhao D; Wang M
    Int J Biol Macromol; 2023 Jan; 225():467-483. PubMed ID: 36379281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemicelluloses.
    Scheller HV; Ulvskov P
    Annu Rev Plant Biol; 2010; 61():263-89. PubMed ID: 20192742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus.
    Xiao MZ; Chen WJ; Cao XF; Chen YY; Zhao BC; Jiang ZH; Yuan TQ; Sun RC
    Carbohydr Polym; 2020 Jun; 238():116212. PubMed ID: 32299557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the contributions of hemicelluloses to assembly and mechanical properties of cellulose networks.
    Zhang W; Yang J; Lu Y; Li M; Peng F; Bian J
    Carbohydr Polym; 2023 Feb; 301(Pt A):120292. PubMed ID: 36436850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallite width determines monolayer hydration across a wide spectrum of celluloses isolated from plants.
    Driemeier C; Bragatto J
    J Phys Chem B; 2013 Jan; 117(1):415-21. PubMed ID: 23256770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification and monosaccharide composition of hemicelluloses from different plant functional types.
    Schädel C; Blöchl A; Richter A; Hoch G
    Plant Physiol Biochem; 2010 Jan; 48(1):1-8. PubMed ID: 19926487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the properties of hemicelluloses adsorbed onto microfibrillar cellulose isolated from apple parenchyma.
    Szymańska-Chargot M; Pękala P; Myśliwiec D; Cieśla J; Pieczywek PM; Siemińska-Kuczer A; Zdunek A
    Food Chem; 2024 Jan; 430():137116. PubMed ID: 37566981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble beta-1,4-linked polysaccharides: 13C-NMR evidence.
    Hackney JM; Atalla RH; VanderHart DL
    Int J Biol Macromol; 1994 Aug; 16(4):215-8. PubMed ID: 7848969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant and algal structure: from cell walls to biomechanical function.
    Shtein I; Bar-On B; Popper ZA
    Physiol Plant; 2018 Sep; 164(1):56-66. PubMed ID: 29572853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction evidence for the structure of cellulose microfibrils in bamboo, a model for grass and cereal celluloses.
    Thomas LH; Forsyth VT; Martel A; Grillo I; Altaner CM; Jarvis MC
    BMC Plant Biol; 2015 Jun; 15():153. PubMed ID: 26099632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity in the chemistry, structure and function of plant cell walls.
    Burton RA; Gidley MJ; Fincher GB
    Nat Chem Biol; 2010 Oct; 6(10):724-32. PubMed ID: 20852610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of in vitro binding of isolated pectic domains to cellulose by adsorption isotherms, electron microscopy, and X-ray diffraction methods.
    Zykwinska A; Gaillard C; Buléon A; Pontoire B; Garnier C; Thibault JF; Ralet MC
    Biomacromolecules; 2007 Jan; 8(1):223-32. PubMed ID: 17206811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of plant matrix polysaccharides on cellulose produced by surface-tethered cellulose synthases.
    Basu S; Omadjela O; Zimmer J; Catchmark JM
    Carbohydr Polym; 2017 Apr; 162():93-99. PubMed ID: 28224899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.