These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 8485342)
21. Identification of the C-terminal amino acid amides by carboxypeptidase Y digestion and fast atom bombardment mass spectrometry. Kim J; Kim K Biochem Mol Biol Int; 1994 Nov; 34(5):897-907. PubMed ID: 7703906 [TBL] [Abstract][Full Text] [Related]
22. A new procedure for peptide alignment in protein sequence determination using fast atom bombardment mass spectral data. Petrilli P; Sepe C; Pucci P Biol Mass Spectrom; 1991 Mar; 20(3):115-20. PubMed ID: 2069983 [TBL] [Abstract][Full Text] [Related]
23. Fast atom bombardment mass spectrometry of some lantibiotics. Lipták M; Vékey K; van Dongen WD; Heerma W Biol Mass Spectrom; 1994 Nov; 23(11):701-6. PubMed ID: 7811759 [TBL] [Abstract][Full Text] [Related]
24. Formation of diagnostic product ions from cyanobacterial cyclic peptides by the two-bond fission mechanism using ion trap liquid chromatography/multi-stage mass spectrometry. Mayumi T; Kato H; Kawasaki Y; Harada K Rapid Commun Mass Spectrom; 2007; 21(6):1025-33. PubMed ID: 17318805 [TBL] [Abstract][Full Text] [Related]
25. Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Greis KD; Hayes BK; Comer FI; Kirk M; Barnes S; Lowary TL; Hart GW Anal Biochem; 1996 Feb; 234(1):38-49. PubMed ID: 8742080 [TBL] [Abstract][Full Text] [Related]
26. Desorption of ions from locust tissues. II. Metabolites of E-destruxin using negative-ion fast-atom bombardment mass spectrometry. Lange C; Loutelier C; Cherton JC; Cassier P; Vey A; Pais M Rapid Commun Mass Spectrom; 1992 Jan; 6(1):28-31. PubMed ID: 1591397 [No Abstract] [Full Text] [Related]
27. Characterization of underivatized tetrapeptides by negative-ion fast-atom bombardment mass spectrometry. Bradford AM; Waugh RJ; Bowie JH Rapid Commun Mass Spectrom; 1995; 9(8):677-85. PubMed ID: 7647365 [TBL] [Abstract][Full Text] [Related]
28. Identification and characterization of O-biotinylated hydroxy amino acid residues in peptides. Miller BT; Rogers ME; Smith JS; Kurosky A Anal Biochem; 1994 Jun; 219(2):240-8. PubMed ID: 8080081 [TBL] [Abstract][Full Text] [Related]
29. Analysis of the disulfide linkage pattern in circulin A and B, HIV-inhibitory macrocyclic peptides. Derua R; Gustafson KR; Pannell LK Biochem Biophys Res Commun; 1996 Nov; 228(2):632-8. PubMed ID: 8920961 [TBL] [Abstract][Full Text] [Related]
30. Sequencing of peptides containing alanine, asparagine, histidine, isoleucine and tryptophan by partial methanolysis and fast atom bombardment mass spectrometry. Foti S; Saletti R Biol Mass Spectrom; 1991 Jun; 20(6):345-50. PubMed ID: 1888781 [TBL] [Abstract][Full Text] [Related]
31. Analysis of a bioactive synthetic analogue of tuftsin by tandem mass spectrometry: anomalous fast atom bombardment activated processes. De Angelis F; Nicoletti R; Kuster T; Heizmann CW; Pinori M; Verdini AS Biol Mass Spectrom; 1994 May; 23(5):262-6. PubMed ID: 8204682 [TBL] [Abstract][Full Text] [Related]
32. The GGNG peptides: novel myoactive peptides isolated from the gut and the whole body of the earthworms. Oumi T; Ukena K; Matsushima O; Ikeda T; Fujita T; Minakata H; Nomoto K Biochem Biophys Res Commun; 1995 Nov; 216(3):1072-8. PubMed ID: 7488182 [TBL] [Abstract][Full Text] [Related]
33. Positive-ion fast-atom bombardment tandem mass spectrometry of peptide nucleic acids. Takao T; Fukuda H; Coull J; Shimonishi Y Rapid Commun Mass Spectrom; 1994 Dec; 8(12):925-8. PubMed ID: 7696700 [TBL] [Abstract][Full Text] [Related]
34. Verification of the position of the phosphate group in some synthetic phosphopeptides by fast-atom bombardment and tandem mass spectrometry. Nijenhuis AA; Fokkens RH; Nibbering NM; van Oijen AH; de Bont HB; Liskamp RM; van Boom JH Rapid Commun Mass Spectrom; 1993 Aug; 7(8):774-9. PubMed ID: 8374165 [TBL] [Abstract][Full Text] [Related]
35. Side reactions in solid phase synthesis of histidine-containing peptides. Characterization of two major impurities by sample displacement chromatography and FAB-MS. Pessi A; Mancini V; Filtri P; Chiappinelli L Int J Pept Protein Res; 1992 Jan; 39(1):58-62. PubMed ID: 1634330 [TBL] [Abstract][Full Text] [Related]
36. BF3-catalysed methanolysis combined with fast atom bombardment tandem mass spectrometry as a new tool for the preparation and analysis of linear secocyclosporins. Havlícek V; Jegorov A; Sedmera P; Ryska M Rapid Commun Mass Spectrom; 1995; Spec No():S158-64. PubMed ID: 8829477 [TBL] [Abstract][Full Text] [Related]
37. Fast atom bombardment and tandem mass spectrometry at high and low collision energy for the sequence analysis of low to middle-mass peptides. Rubino FM; Danieli B; Chillemi F; Cremonesi A Biol Mass Spectrom; 1992 Sep; 21(9):451-62. PubMed ID: 1420381 [No Abstract] [Full Text] [Related]
38. Fast atom bombardment mass spectrometry and selective acid hydrolysis for the analysis of partially modified retro-inverso peptide analogues. De Angelis F; Ceccarelli S; Viscomi GC; Pinori M; Verdini AS Biomed Environ Mass Spectrom; 1989 Oct; 18(10):867-71. PubMed ID: 2804434 [TBL] [Abstract][Full Text] [Related]