BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 8485619)

  • 1. Cellular mechanism of U78517F in the protection of porcine coronary artery endothelial cells from oxygen radical-induced damage.
    Maeda K; Kimura M; Hayashi S
    Br J Pharmacol; 1993 Apr; 108(4):1077-82. PubMed ID: 8485619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytosolic calcium increase in coronary endothelial cells after H2O2 exposure and the inhibitory effect of U78517F.
    Kimura M; Maeda K; Hayashi S
    Br J Pharmacol; 1992 Oct; 107(2):488-93. PubMed ID: 1422594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dextran sulfate protects porcine but not bovine cultured endothelial cells from free radical injury.
    Ram JI; Hiebert LM
    Can J Vet Res; 2003 May; 67(2):81-7. PubMed ID: 12760471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SB 211475, a metabolite of carvedilol, a novel antihypertensive agent, is a potent antioxidant.
    Yue TL; Mckenna PJ; Lysko PG; Gu JL; Lysko KA; Ruffolo RR; Feuerstein GZ
    Eur J Pharmacol; 1994 Jan; 251(2-3):237-43. PubMed ID: 8149979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kainic acid-induced lipid peroxidation: protection with butylated hydroxytoluene and U78517F in primary cultures of cerebellar granule cells.
    Puttfarcken PS; Getz RL; Coyle JT
    Brain Res; 1993 Oct; 624(1-2):223-32. PubMed ID: 8252395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA strand break formation following exposure of bovine pulmonary artery and aortic endothelial cells to reactive oxygen products.
    Spragg RG
    Am J Respir Cell Mol Biol; 1991 Jan; 4(1):4-10. PubMed ID: 1846077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TMPDP, a tetramethylpyrazine derivative, protects vascular endothelial cells from oxidation damage by hydrogen peroxide.
    Ou Y; Guo XL; Zhai L; Liu XY; Cheng YN
    Pharmazie; 2010 Oct; 65(10):755-9. PubMed ID: 21105578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different role of lipid peroxidation in oxidative stress-induced lethal injury in normal and tumor thymocytes.
    Palozza P; Agostara G; Piccioni E; Bartoli GM
    Arch Biochem Biophys; 1994 Jul; 312(1):88-94. PubMed ID: 8031151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of nitric oxide and cell redox status on the regulation of endothelial cell xanthine dehydrogenase.
    Hassoun PM; Yu FS; Zulueta JJ; White AC; Lanzillo JJ
    Am J Physiol; 1995 May; 268(5 Pt 1):L809-17. PubMed ID: 7762682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carvedilol, a new vasodilating beta adrenoceptor blocker antihypertensive drug, protects endothelial cells from damage initiated by xanthine-xanthine oxidase and neutrophils.
    Yue TL; McKenna PJ; Gu JL; Cheng HY; Ruffolo RE; Feuerstein GZ
    Cardiovasc Res; 1994 Mar; 28(3):400-6. PubMed ID: 7909721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytosolic Ca2+ movements of endothelial cells exposed to reactive oxygen intermediates: role of hydroxyl radical-mediated redox alteration of cell-membrane Ca2+ channels.
    Az-ma T; Saeki N; Yuge O
    Br J Pharmacol; 1999 Mar; 126(6):1462-70. PubMed ID: 10217541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superoxide radical-mediated endothelial injury and vasoconstriction of rat thoracic aortic rings.
    Lawson DL; Mehta JL; Nichols WW; Mehta P; Donnelly WH
    J Lab Clin Med; 1990 May; 115(5):541-8. PubMed ID: 2160508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxalate and calcium oxalate mediated free radical toxicity in renal epithelial cells: effect of antioxidants.
    Thamilselvan S; Khan SR; Menon M
    Urol Res; 2003 Mar; 31(1):3-9. PubMed ID: 12624656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between direct ESR spectroscopic measurements and electromechanical and biochemical assessments of exogenous free radical injury in isolated rat cardiac myocytes.
    Courtois M; Maupoil V; Fantini E; Durot I; Javouhey-Donzel A; Athias P; Grynberg A; Rochette L
    Free Radic Biol Med; 1998 Jan; 24(1):121-31. PubMed ID: 9436621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells.
    Dreher D; Junod AF
    J Cell Physiol; 1995 Jan; 162(1):147-53. PubMed ID: 7814447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel 21-aminosteroidlike compounds prevent iron-induced free radical-mediated injury to vascular endothelial cells.
    Pakala R; Pakala R; Benedict CR
    J Cardiovasc Pharmacol; 1995 Jun; 25(6):871-9. PubMed ID: 7564331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marked variation in free radical injury between bovine and porcine endothelial cells cultured in different media.
    Ram JI; Hiebert LM
    In Vitr Mol Toxicol; 2001; 14(3):209-17. PubMed ID: 11846993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of lipid soluble, membrane-protective agents against hydrogen peroxide cytotoxicity in cardiac myocytes.
    Horwitz LD; Wallner JS; Decker DE; Buxser SE
    Free Radic Biol Med; 1996; 21(6):743-53. PubMed ID: 8902520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of oxygen free radicals and free radical scavengers on the growth behaviour and oxidative tissue damage of bovine retinal pigment epithelium cells in vitro.
    Augustin AJ; Hunt S; Breipohl W; Böker T; Spitznas M
    Graefes Arch Clin Exp Ophthalmol; 1996 Jan; 234(1):58-63. PubMed ID: 8750852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.