These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8485830)

  • 1. Cardiac hypertrophy and failure--a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity.
    Moalic JM; Charlemagne D; Mansier P; Chevalier B; Swynghedauw B
    Circulation; 1993 May; 87(5 Suppl):IV21-6. PubMed ID: 8485830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Chronic cardiac insufficiency, a disease of adaptation].
    Swynghedauw B
    C R Seances Soc Biol Fil; 1992; 186(4):332-41. PubMed ID: 1301220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remodeling of the heart in chronic pressure overload.
    Swynghedauw B
    Basic Res Cardiol; 1991; 86 Suppl 1():99-105. PubMed ID: 1645166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Physiopathology of cardiac insufficiency. Biological factors of adaptation and disadaptation of the heart to chronic mechanical overload].
    Swynghedauw B
    Schweiz Med Wochenschr; 1995 Feb; 125(7):288-93. PubMed ID: 7878407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and mechanisms of heart failure in hypertensive patients: left ventricular remodelling in hypertensive heart disease.
    Dubus I; Samuel JL; Swynghedauw B
    Eur Heart J; 1993 Nov; 14 Suppl J():76-81. PubMed ID: 8281969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remodeling of the heart (membrane proteins and collagen) in hypertensive cardiopathy.
    Sainte Beuve C; Leclercq C; Rannou F; Oliviero P; Mansier P; Chevalier B; Swynghedauw B; Charlemagne D
    Kidney Int Suppl; 1992 Jun; 37():S45-50. PubMed ID: 1385839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The membrane proteins of the overloaded and senescent heart.
    Chevalier B; Charlemagne D; Callens-el Amrani F; Carre F; Moalic JM; Delcayre C; Mansier P; Swynghedauw B
    Basic Res Cardiol; 1992; 87 Suppl 1():187-97. PubMed ID: 1323260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biological bases of ventricular remodeling].
    Swynghedauw B
    Arch Mal Coeur Vaiss; 1993 Feb; 86 Spec No 2():41-4. PubMed ID: 8215789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment.
    Sabbah HN; Sharov VG; Gupta RC; Mishra S; Rastogi S; Undrovinas AI; Chaudhry PA; Todor A; Mishima T; Tanhehco EJ; Suzuki G
    Circ Res; 2003 Nov; 93(11):1095-101. PubMed ID: 14563716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in cardiac gene expression during ventricular remodeling following experimental myocardial infarction.
    Gidh-Jain M; Huang B; Jain P; Gick G; El-Sherif N
    J Mol Cell Cardiol; 1998 Mar; 30(3):627-37. PubMed ID: 9515038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sarcoplasmic reticulum genes are upregulated in mild cardiac hypertrophy but downregulated in severe cardiac hypertrophy induced by pressure overload.
    Arai M; Suzuki T; Nagai R
    J Mol Cell Cardiol; 1996 Aug; 28(8):1583-90. PubMed ID: 8877769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype.
    Yue P; Long CS; Austin R; Chang KC; Simpson PC; Massie BM
    J Mol Cell Cardiol; 1998 Aug; 30(8):1615-30. PubMed ID: 9737947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Regulation of cardiac output;an approximation at 3 levels: organic, cellular, and protein].
    Martíenz Caro D; Rodríguez García JA; Munguía L
    Rev Med Univ Navarra; 1999; 43(1):29-40. PubMed ID: 10386344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic stretch down-regulates calcium transporter gene expression in neonatal rat ventricular myocytes.
    Cadre BM; Qi M; Eble DM; Shannon TR; Bers DM; Samarel AM
    J Mol Cell Cardiol; 1998 Nov; 30(11):2247-59. PubMed ID: 9925362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SRF-dependent gene expression in isolated cardiomyocytes: regulation of genes involved in cardiac hypertrophy.
    Nelson TJ; Balza R; Xiao Q; Misra RP
    J Mol Cell Cardiol; 2005 Sep; 39(3):479-89. PubMed ID: 15950986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes.
    Huang L; Li H; Xie Z
    J Mol Cell Cardiol; 1997 Feb; 29(2):429-37. PubMed ID: 9140803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of atrial contraction by PKA and PKC during the compensated phase of eccentric cardiac hypertrophy.
    Haddad GE; Coleman BR; Zhao A; Blackwell KN
    Basic Res Cardiol; 2004 Sep; 99(5):317-27. PubMed ID: 15309409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Biology of myocardial adaptation to mechanical overload].
    Swynghedauw B
    Biomed Pharmacother; 1982; 36(5):233-5. PubMed ID: 6220749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.
    Swynghedauw B; Chevalier B; Charlemagne D; Mansier P; Carré F
    Cardiovasc Res; 1997 Jul; 35(1):6-12. PubMed ID: 9302342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biological limits of cardiac adaptation to chronic overload.
    Swynghedauw B
    Eur Heart J; 1990 Nov; 11 Suppl G():87-94. PubMed ID: 2150042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.