These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 8485842)

  • 1. Immunohistochemical localization of the S-100 beta protein in postnatal cat visual cortex: spatial and temporal patterns of expression in cortical and subcortical glia.
    Dyck RH; Van Eldik LJ; Cynader MS
    Brain Res Dev Brain Res; 1993 Apr; 72(2):181-92. PubMed ID: 8485842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocytes in cat visual cortex studied by GFAP and S-100 immunocytochemistry during postnatal development.
    Müller CM
    J Comp Neurol; 1992 Mar; 317(3):309-23. PubMed ID: 1374441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postnatal development of glial fibrillary acidic protein, vimentin and S100 protein in monkey visual cortex: evidence for a transient reduction of GFAP immunoreactivity.
    Missler M; Eins S; Böttcher H; Wolff JR
    Brain Res Dev Brain Res; 1994 Oct; 82(1-2):103-17. PubMed ID: 7842498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postnatal development of GFAP, connexin43 and connexin30 in cat visual cortex.
    Rochefort N; Quenech'du N; Ezan P; Giaume C; Milleret C
    Brain Res Dev Brain Res; 2005 Dec; 160(2):252-64. PubMed ID: 16297988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postnatal development of vimentin-immunoreactive radial glial cells in the primary visual cortex of the cat.
    Engel AK; Müller CM
    J Neurocytol; 1989 Aug; 18(4):437-50. PubMed ID: 2809633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of glial fibrillary acidic protein and vimentin immunoreactivity during rat visual cortex development.
    Stichel CC; Müller CM; Zilles K
    J Neurocytol; 1991 Feb; 20(2):97-108. PubMed ID: 2027041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and regulation of beta adrenergic receptors in kitten visual cortex: an immunocytochemical and autoradiographic study.
    Liu Y; Jia W; Strosberg AD; Cynader M
    Brain Res; 1993 Dec; 632(1-2):274-86. PubMed ID: 8149233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark-rearing retards the maturation of astrocytes in restricted layers of cat visual cortex.
    Müller CM
    Glia; 1990; 3(6):487-94. PubMed ID: 2148551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroglia distribution in the developing and adult inferior colliculus.
    Hafidi A; Galifianakis D
    Brain Res Dev Brain Res; 2003 Jul; 143(2):167-77. PubMed ID: 12855188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. S100 immunoreactivity is increased in reactive astrocytes of the visual pathways following a mechanical lesion of the rat occipital cortex.
    Cerutti SM; Chadi G
    Cell Biol Int; 2000; 24(1):35-49. PubMed ID: 10826771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial fibrillary acidic protein and S-100 protein in human hepatic encephalopathy: immunocytochemical demonstration of dissociation of two glia-associated proteins.
    Kimura T; Budka H
    Acta Neuropathol; 1986; 70(1):17-21. PubMed ID: 3727931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar, and columnar distributions during postnatal development.
    Dyck RH; Cynader MS
    J Neurosci; 1993 Oct; 13(10):4316-38. PubMed ID: 8410190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neonatal separation stress reduces glial fibrillary acidic protein- and S100beta-immunoreactive astrocytes in the rat medial precentral cortex.
    Musholt K; Cirillo G; Cavaliere C; Rosaria Bianco M; Bock J; Helmeke C; Braun K; Papa M
    Dev Neurobiol; 2009 Mar; 69(4):203-11. PubMed ID: 19137572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and distribution of neurons and glial cells expressing beta-adrenergic receptors in developing kitten visual cortex.
    Liu Y; Jia WG; Strosberg AD; Cynader M
    Brain Res Dev Brain Res; 1992 Feb; 65(2):269-73. PubMed ID: 1315226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of postnatal progenitor migration and consequent abnormal pattern of glial distribution in the cerebrum following administration of methylmercury.
    Kakita A; Inenaga C; Sakamoto M; Takahashi H
    J Neuropathol Exp Neurol; 2003 Aug; 62(8):835-47. PubMed ID: 14503639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental changes in the flotillin-1 expression pattern of the rat visual cortex.
    Nakadate K
    Neuroscience; 2015 Apr; 292():101-11. PubMed ID: 25732136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunohistochemical staining for glial fibrillary acidic protein (GFAP) after deafferentation or ischemic infarction in rat visual system: features of reactive and damaged astrocytes.
    Schmidt-Kastner R; Wietasch K; Weigel H; Eysel UT
    Int J Dev Neurosci; 1993 Apr; 11(2):157-74. PubMed ID: 7687085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immunocytochemical expression of monocarboxylate transporters in the human visual cortex at midgestation.
    Fayol L; Baud O; Monier A; Pellerin L; Magistretti P; Evrard P; Verney C
    Brain Res Dev Brain Res; 2004 Jan; 148(1):69-76. PubMed ID: 14757520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postnatal development of GFAP in mouse visual cortex is not affected by light deprivation.
    Corvetti L; Capsoni S; Cattaneo A; Domenici L
    Glia; 2003 Mar; 41(4):404-14. PubMed ID: 12555207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S100 immunoreactive glial cells in the forebrain and midbrain of the lizard Gallotia galloti during ontogeny.
    Romero-Alemán Mdel M; Monzón-Mayor M; Yanes C; Arbelo-Galván JF; Lang D; Renau-Piqueras J; Negrín-Martínez C
    J Neurobiol; 2003 Oct; 57(1):54-66. PubMed ID: 12973828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.