These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 8486079)
21. A novel repetitive sequence, termed the JNK repeat family, located on an extra heterochromatic region of chromosome 2R of Japanese rye. Nagaki K; Tsujimoto H; Sasakuma T Chromosome Res; 1999; 7(2):95-101. PubMed ID: 10328621 [TBL] [Abstract][Full Text] [Related]
22. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the A and B chromosomes of the Korean field mouse (Apodemus peninsulae, Muridae, Rodentia). Matsubara K; Yamada K; Umemoto S; Tsuchiya K; Ikeda N; Nishida C; Chijiwa T; Moriwaki K; Matsuda Y Chromosome Res; 2008; 16(7):1013-26. PubMed ID: 18949567 [TBL] [Abstract][Full Text] [Related]
23. [Use of a cloned alphoid repetitive sequence of human DNA in studying the polymorphism of heterochromatin regions of chromosomes]. Kruminia AR; Kroshkina VG; Iurov IuB; Aleksandrov IA; Mitkevich SP Genetika; 1988 May; 24(5):937-42. PubMed ID: 3166442 [TBL] [Abstract][Full Text] [Related]
24. Molecular cytogenetic analysis of the highly repetitive DNA in the genome of Apodemus argenteus, with comments on the phylogenetic relationships in the genus Apodemus. Fukushi D; Kuro-O M; Shichiri M; Obara Y; Tsuchiya K Cytogenet Cell Genet; 2001; 92(3-4):254-63. PubMed ID: 11435698 [TBL] [Abstract][Full Text] [Related]
25. Parallelism in evolution of highly repetitive DNAs in sibling species. Mravinac B; Plohl M Mol Biol Evol; 2010 Aug; 27(8):1857-67. PubMed ID: 20203289 [TBL] [Abstract][Full Text] [Related]
26. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Yamada K; Nishida-Umehara C; Matsuda Y Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323 [TBL] [Abstract][Full Text] [Related]
27. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite. Durfy SJ; Willard HF J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932 [TBL] [Abstract][Full Text] [Related]
28. Repetitive sequences in the genome of Anemone blanda: identification of tandem arrays and of dispersed repeats. Hagemann S; Scheer B; Schweizer D Chromosoma; 1993 May; 102(5):312-24. PubMed ID: 8325163 [TBL] [Abstract][Full Text] [Related]
29. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. Hizume M; Shibata F; Maruyama Y; Kondo T Chromosoma; 2001 Sep; 110(5):345-51. PubMed ID: 11685534 [TBL] [Abstract][Full Text] [Related]
31. The distribution of repetitive DNAs along chromosomes in plants revealed by self-genomic in situ hybridization. She C; Liu J; Diao Y; Hu Z; Song Y J Genet Genomics; 2007 May; 34(5):437-48. PubMed ID: 17560530 [TBL] [Abstract][Full Text] [Related]
32. Divergence of repetitive DNA sequences in the heterochromatin of medaka fishes: Molecular cytogenetic characterization of constitutive heterochromatin in two medaka species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes). Uno Y; Asada Y; Nishida C; Takehana Y; Sakaizumi M; Matsuda Y Cytogenet Genome Res; 2013; 141(2-3):212-26. PubMed ID: 24028862 [TBL] [Abstract][Full Text] [Related]
33. Genome composition in Venezuelan spiny-rats of the genus Proechimys(Rodentia, Echimyidae). I. Genome size, C-heterochromatin and repetitive DNAs in situ hybridization patterns. Garagna S; Pérez-Zapata A; Zuccotti M; Mascheretti S; Marziliano N; Redi CA; Aguilera M; Capanna E Cytogenet Cell Genet; 1997; 78(1):36-43. PubMed ID: 9345903 [TBL] [Abstract][Full Text] [Related]
34. Towards a physical map of the fertility genes on the heterochromatic Y chromosome of Drosophila hydei: families of repetitive sequences transcribed on the lampbrush loops Nooses and Threads are organized in extended clusters of several hundred kilobases. Trapitz P; Glätzer KH; Bünemann H Mol Gen Genet; 1992 Nov; 235(2-3):221-34. PubMed ID: 1465096 [TBL] [Abstract][Full Text] [Related]
35. New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Lin CC; Sasi R; Fan YS; Chen ZQ Chromosoma; 1991 Oct; 101(1):19-24. PubMed ID: 1769270 [TBL] [Abstract][Full Text] [Related]
36. Characterisation of a tandem repetitive sequence cloned from the deer Capreolus capreolus and its chromosomal localisation in two muntjac species. Scherthan H Hereditas; 1991; 115(1):43-9. PubMed ID: 1774183 [TBL] [Abstract][Full Text] [Related]
37. Cloning and characterization of a fish centromeric satellite DNA. Garrido-Ramos MA; Jamilena M; Lozano R; Ruiz Rejón C; Ruiz Rejón M Cytogenet Cell Genet; 1994; 65(4):233-7. PubMed ID: 8258296 [TBL] [Abstract][Full Text] [Related]
38. Highly repetitive DNA families restricted to germ cells in a Japanese hagfish (Eptatretus burgeri): a hierarchical and mosaic structure in eliminated chromosomes. Kubota S; Takano J; Tsuneishi R; Kobayakawa S; Fujikawa N; Nabeyama M; Kohno S Genetica; 2001; 111(1-3):319-28. PubMed ID: 11841177 [TBL] [Abstract][Full Text] [Related]
39. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. Vershinin AV; Schwarzacher T; Heslop-Harrison JS Plant Cell; 1995 Nov; 7(11):1823-33. PubMed ID: 8535136 [TBL] [Abstract][Full Text] [Related]
40. Characterization of a new repetitive sequence that is enriched on microchromosomes of turkey. Matzke AJ; Varga F; Gruendler P; Unfried I; Berger H; Mayr B; Matzke MA Chromosoma; 1992 Dec; 102(1):9-14. PubMed ID: 1291229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]