These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8486131)

  • 1. On the use of dimensionless parameters in acid-base theory. II. The molar buffer capacities of bivalent weak acids and bases.
    Rilbe H
    Electrophoresis; 1993 Mar; 14(3):202-4. PubMed ID: 8486131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the use of dimensionless parameters in acid-base theory: VI. The buffer capacities of equimolar binary mixtures of monovalent weak protolytes as compared to that of bivalent protolytes.
    Rilbe H
    Electrophoresis; 1994 May; 15(5):580-3. PubMed ID: 7925234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the use of dimensionless parameters in acid-base theory. III. The molar buffer capacity of trivalent protolytes.
    Rilbe H
    Electrophoresis; 1993 Jul; 14(7):591-6. PubMed ID: 8375349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the use of dimensionless parameters in acid-base theory. V. Buffers composed of binary mixtures of monovalent weak acids and bases.
    Rilbe H
    Electrophoresis; 1993 Dec; 14(12):1271-7. PubMed ID: 8137789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of dimension-less parameters in acid-base theory. I. The buffer capacity of simple ampholyte solutions.
    Rilbe H
    Electrophoresis; 1992 Nov; 13(11):811-6. PubMed ID: 1483421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.
    Mioni R; Mioni G
    Scand J Clin Lab Invest; 2015 Oct; 75(6):452-69. PubMed ID: 26059505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the use of dimensionless parameters in acid-base theory. IV. The pH of water solutions of acids, bases, and simple ampholytes.
    Rilbe H
    Electrophoresis; 1993 Oct; 14(10):986-92. PubMed ID: 8125066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model.
    Zhou MX; Foley JP
    Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the pH, the concentration and the nature of the buffer on the adsorption mechanism of an ionic compound in reversed-phase liquid chromatography. II. Analytical and overloaded band profiles on Symmetry-C18 and Xterra-C18.
    Gritti F; Guiochon G
    J Chromatogr A; 2004 Jul; 1041(1-2):63-75. PubMed ID: 15281255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The buffer value of weak acids and bases: origin of the concept, and first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro (1914).
    Roos A; Boron WF
    Respir Physiol; 1980 Apr; 40(1):1-32. PubMed ID: 6994190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of a bivalent counter anion to control the effective mobility of the hydrogen ion constituent in cationic isotachophoresis.
    Sudor J; Stránský Z; Chmela Z; Bocek P
    Electrophoresis; 1988 Dec; 9(12):799-803. PubMed ID: 3243232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state electrolysis of an ampholyte solution and possibility of violation of the "law of pH monotony".
    Stoyanov AV; Righetti PG
    Electrophoresis; 1998 Oct; 19(13):2269-72. PubMed ID: 9788307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ampholyte dissociation theory and properties of ampholyte aqueous solutions.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1997 Oct; 18(11):1944-50. PubMed ID: 9420150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of extracellular weak acids and bases on the intracellular buffering power of snail neurones.
    Szatkowski MS
    J Physiol; 1989 Feb; 409():103-20. PubMed ID: 2555474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-base status of biological fluids: amount of acid, kind of acid, anion-cation difference, and buffer value.
    Kildeberg P
    Scand J Clin Lab Invest; 1983 Apr; 43(2):103-9. PubMed ID: 6612219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast high-throughput method for the determination of acidity constants by capillary electrophoresis: I. Monoprotic weak acids and bases.
    Fuguet E; Ràfols C; Bosch E; Rosés M
    J Chromatogr A; 2009 Apr; 1216(17):3646-51. PubMed ID: 19168179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Mar; 1216(10):1776-88. PubMed ID: 18976999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling two-component isoelectric focusing buffers in a vortex-stabilized electrophoresis apparatus.
    Tracy NI; Ivory CF
    Biotechnol Prog; 2004; 20(1):193-9. PubMed ID: 14763842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Predictive Dissolution: Comparing the Effect of Bicarbonate and Phosphate Buffer on the Dissolution of Weak Acids and Weak Bases.
    Krieg BJ; Taghavi SM; Amidon GL; Amidon GE
    J Pharm Sci; 2015 Sep; 104(9):2894-904. PubMed ID: 25980464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the total plasma concentration of nonvolatile weak acids and the effective dissociation constant of nonvolatile buffers in plasma for use in the strong ion approach to acid-base balance in cats.
    McCullough SM; Constable PD
    Am J Vet Res; 2003 Aug; 64(8):1047-51. PubMed ID: 12926600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.