These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Modelling of plasma-separation through microporous membranes. Gupta BB; Jaffrin MY; Ding LH Int J Artif Organs; 1989 Jan; 12(1):51-8. PubMed ID: 2925262 [TBL] [Abstract][Full Text] [Related]
6. Dynamic filtration of blood: a new concept for enhancing plasma filtration. Ding L; Laurent JM; Jaffrin MY Int J Artif Organs; 1991 Jun; 14(6):365-70. PubMed ID: 1885245 [TBL] [Abstract][Full Text] [Related]
7. Separation of plasma from whole blood by membrane filtration in oscillatory flows. Stairmand JW; Bellhouse BJ; Jamal Z; Lewis RW; Urban JP; Entwistle CC Life Support Syst; 1986; 4(3):193-204. PubMed ID: 3784601 [TBL] [Abstract][Full Text] [Related]
9. Rationale of filtration enhancement in membrane plasmapheresis by pulsatile blood flow. Jaffrin MY; Ding LH; Gupta BB Life Support Syst; 1987; 5(3):267-71. PubMed ID: 3695585 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the efficiency of a new hollow fiber plasmapheresis filter. Orlandini GC; Margaria R Int J Artif Organs; 1983 Jul; 6 Suppl 1():103-6. PubMed ID: 6642727 [TBL] [Abstract][Full Text] [Related]
11. A model of hemolysis in membrane plasmapheresis. Ding LH; Jaffrin MY; Gupta BB ASAIO Trans; 1986; 32(1):330-3. PubMed ID: 3778732 [No Abstract] [Full Text] [Related]
12. Effect of shear rate and transmembrane pressure on hemolysis in membrane plasmapheresis. Ding LH; Gupta BB; Jaffrin MY Life Support Syst; 1985; 3 Suppl 1():346-50. PubMed ID: 3870592 [No Abstract] [Full Text] [Related]
13. A high efficiency membrane separator for donor plasmapheresis. Bellhouse BJ; Lewis RW ASAIO Trans; 1988; 34(3):747-54. PubMed ID: 3058185 [TBL] [Abstract][Full Text] [Related]
14. Maximal flow rates and sieving coefficients in different plasmafilters: effects of increased membrane surfaces and effective length under standardized in vitro conditions. Unger JK; Haltern C; Dohmen B; Rossaint R J Clin Apher; 2002; 17(4):190-8. PubMed ID: 12494412 [TBL] [Abstract][Full Text] [Related]
15. Shear stress related hemolysis and its modelling by mechanical degradation of polymer solutions. Pohl M; Samba O; Wendt MO; Vlastos G Int J Artif Organs; 1998 Feb; 21(2):107-13. PubMed ID: 9569133 [TBL] [Abstract][Full Text] [Related]
16. Hemolysis during leukocyte-reduction filtration of stored red blood cells. Gammon RR; Strayer SA; Avery NL; Mintz PD Ann Clin Lab Sci; 2000 Apr; 30(2):195-9. PubMed ID: 10807165 [TBL] [Abstract][Full Text] [Related]
17. Continuous flow membrane plasmapheresis: theoretical models for flux and hemolysis prediction. Zydney AL; Colton CK Trans Am Soc Artif Intern Organs; 1982; 28():408-12. PubMed ID: 7164272 [No Abstract] [Full Text] [Related]
18. Effect of membrane dimensions and shear rate on plasma filtration for hollow fibers. Jaffrin MY; Gupta BB; Ding LH; Garreau M Trans Am Soc Artif Intern Organs; 1984; 30():401-5. PubMed ID: 6533915 [No Abstract] [Full Text] [Related]
19. A low-cost automated device incorporating a hollow fiber filtration cartridge for large-scale production of ghosts from human erythrocytes. el Ouggouti S; Truskolaski A; Bussel A; Dhermy D; Bertrand O J Biochem Biophys Methods; 1990; 21(4):299-309. PubMed ID: 2089072 [TBL] [Abstract][Full Text] [Related]
20. Blood cell effects in membrane plasma separation. Malchesky PS; Wojcicki J; Moorman M; Pentermann EJ; Lewandowski J; Nose Y Trans Am Soc Artif Intern Organs; 1984; 30():313-9. PubMed ID: 6533904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]