These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 8486675)

  • 1. Kinetics of binding and hydrolysis of a series of nucleoside triphosphates by actomyosin-S1. Relationship between solution rate constants and properties of muscle fibers.
    White HD; Belknap B; Jiang W
    J Biol Chem; 1993 May; 268(14):10039-45. PubMed ID: 8486675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of differing nucleotides to investigate cross-bridge kinetics.
    Pate E; Franks-Skiba K; White H; Cooke R
    J Biol Chem; 1993 May; 268(14):10046-53. PubMed ID: 8486676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of 1-N6-etheno-2-aza-ATP hydrolysis by bovine ventricular myosin subfragment 1 and actomyosin subfragment 1. The nucleotide binding steps.
    Smith SJ; White HD
    J Biol Chem; 1985 Dec; 260(28):15146-55. PubMed ID: 3877724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis.
    Regnier M; Lee DM; Homsher E
    Biophys J; 1998 Jun; 74(6):3044-58. PubMed ID: 9635759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism of 1-N6-etheno-2-aza-ATP and 1-N6-etheno-2-aza-ADP binding to bovine ventricular actomyosin-S1 and myofibrils.
    Smith SJ; White HD
    J Biol Chem; 1985 Dec; 260(28):15156-62. PubMed ID: 4066666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predominant attached state of myosin cross-bridges during contraction and relaxation at low ionic strength.
    Nagano H; Yanagida T
    J Mol Biol; 1984 Aug; 177(4):769-85. PubMed ID: 6384526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of the interaction between actin, ADP, and cardiac myosin-S1.
    Siemankowski RF; White HD
    J Biol Chem; 1984 Apr; 259(8):5045-53. PubMed ID: 6715335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prodan fluorescence reflects differences in nucleotide-induced conformational states in the myosin head and allows continuous visualization of the ATPase reactions.
    Hiratsuka T
    Biochemistry; 1998 May; 37(20):7167-76. PubMed ID: 9585528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of ATP and inorganic phosphate release during hydrolysis of ATP by rabbit skeletal actomyosin subfragment 1. Oxygen exchange between water and ATP or phosphate.
    Bowater R; Zimmerman RW; Webb MR
    J Biol Chem; 1990 Jan; 265(1):171-6. PubMed ID: 2136736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of muscle contraction and actomyosin NTP hydrolysis from rabbit using a series of metal-nucleotide substrates.
    Burton K; White H; Sleep J
    J Physiol; 2005 Mar; 563(Pt 3):689-711. PubMed ID: 15611022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient kinetic analysis of N-phenylmaleimide-reacted myosin subfragment-1.
    Xie L; Li WX; Rhodes T; White H; Schoenberg M
    Biochemistry; 1999 May; 38(18):5925-31. PubMed ID: 10231546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactions of 1-N6-ethenoadenosine nucleotides with myosin subfragment 1 and acto-subfragment 1 of skeletal and smooth muscle.
    Rosenfeld SS; Taylor EW
    J Biol Chem; 1984 Oct; 259(19):11920-9. PubMed ID: 6480589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and kinetic characterisation of myosin and myosin S1 from the Drosophila indirect flight muscles.
    Silva R; Sparrow JC; Geeves MA
    J Muscle Res Cell Motil; 2003; 24(8):489-98. PubMed ID: 14870964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle.
    Siemankowski RF; Wiseman MO; White HD
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):658-62. PubMed ID: 3871943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism for coupling free energy in ATPase to the myosin active site.
    Park S; Ajtai K; Burghardt TP
    Biochemistry; 1997 Mar; 36(11):3368-72. PubMed ID: 9116016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of substituting uridine triphosphate for ATP on the crossbridge cycle of rabbit muscle.
    Seow CY; White HD; Ford LE
    J Physiol; 2001 Dec; 537(Pt 3):907-21. PubMed ID: 11744764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Demembranated muscle fibers catalyze a more rapid exchange between phosphate and adenosine triphosphate than actomyosin subfragment 1.
    Bowater R; Sleep J
    Biochemistry; 1988 Jul; 27(14):5314-23. PubMed ID: 3167048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [C-terminal sites of caldesmon drive ATP hydrolysis cycle by shifting actomyosin itermediates from strong to weak binding of myosin and actin].
    Pronina OE; Copeland O; Marston S; Borovikov IuS
    Tsitologiia; 2006; 48(1):9-18. PubMed ID: 16568830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.