BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8487000)

  • 1. Effect of adenosine on glucose metabolism of Rana ridibunda erythrocytes.
    Kaloyianni M; Michaelidis B; Moutou K
    J Exp Biol; 1993 Apr; 177():41-50. PubMed ID: 8487000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate utilization by Rana ridibunda erythrocytes.
    Kaloyianni M; Moutou K
    Comp Biochem Physiol Biochem Mol Biol; 1994 Jul; 108(3):357-66. PubMed ID: 8081659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incubation studies on human red cells utilizing glucose or inosine under various conditions.
    Jablonska E; Bishop C
    J Lab Clin Med; 1975 Oct; 86(4):605-15. PubMed ID: 240898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is adenosine a second metabolic substrate for human red blood cells?
    Kim HD
    Biochim Biophys Acta; 1990 Nov; 1036(2):113-20. PubMed ID: 2223829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of glycolytic and oxidative metabolism blockers on the Na-K pump in erythrocytes of the frog, Rana temporaria.
    Agalakova NI; Lapin AV; Gusev GP
    J Comp Physiol B; 1997 Nov; 167(8):576-81. PubMed ID: 9404018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation by calcium of glucose uptake and lactate production in pigeon erythrocytes.
    Lucas M
    Biomed Biochim Acta; 1987; 46(2-3):S253-7. PubMed ID: 3109406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydrocortisone on the synthesis of 2,3-diphosphoglycerate in human erythrocytes.
    Oimomi M; Yoshimura Y; Kubota S; Tanke G; Takagi K; Baba S
    Transfusion; 1982; 22(4):266-8. PubMed ID: 7101418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between glucose concentration and rate of lactate production by human erythrocytes in an open perfusion system.
    Kuchel PW; Chapman BE; Lovric VA; Raftos JE; Stewart IM; Thorburn DR
    Biochim Biophys Acta; 1984 Oct; 805(2):191-203. PubMed ID: 6487659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenosine, inosine, and guanosine protect glial cells during glucose deprivation and mitochondrial inhibition: correlation between protection and ATP preservation.
    Jurkowitz MS; Litsky ML; Browning MJ; Hohl CM
    J Neurochem; 1998 Aug; 71(2):535-48. PubMed ID: 9681443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenine nucleotide metabolism and nucleoside transport in human erythrocytes under ATP depletion conditions.
    Plagemann PG; Wohlhueter RM; Kraupp M
    Biochim Biophys Acta; 1985 Jul; 817(1):51-60. PubMed ID: 3873962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An incubation medium for the elevation of adenosine triphosphate and 2,3-diphosphoglycerate in fresh and long-preserved human erythrocytes.
    Rubinstein D; Warrendorf E
    Can J Biochem; 1975 Jun; 53(6):671-8. PubMed ID: 1139405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase.
    Kaloyianni M; Tsikriktsi O; Tsianopoulou P
    Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI; Lapin AV; Gusev GP
    Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy and heat production of human erythrocytes in different media.
    de Verdier CH
    Acta Biol Med Ger; 1981; 40(4-5):699-702. PubMed ID: 7315117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleoside transport and metabolism in erythrocytes from the Yucatan miniature pig. Evidence that inosine functions as an in vivo energy substrate.
    Young JD; Paterson AR; Henderson JF
    Biochim Biophys Acta; 1985 Oct; 842(2-3):214-24. PubMed ID: 3902093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleosides and glutamine are primary energy substrates for embryonic and adult chicken red cells.
    Mathew A; Grdisa M; Johnstone RM
    Biochem Cell Biol; 1993; 71(5-6):288-95. PubMed ID: 8274268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glycolysis in human erythrocytes. The mechanism of ATP concentration stabilization.
    Ataullakhanov FI; Vitvitsky VM; Zhabotinsky AM; Pichugin AV; Kholodenko BN; Ehrlich LI
    Acta Biol Med Ger; 1981; 40(7-8):991-7. PubMed ID: 7331640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine triphosphate restoration and discocytic transformation of stored human erythrocytes.
    Watanabe S; Yamamoto R; Ogata M; Murakami T
    Acta Med Okayama; 1985 Jun; 39(3):239-46. PubMed ID: 4024994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation and rate of the hexose monophosphate shunt in Rana ridibunda erythrocytes.
    Kaloyianni M; Kalomenopoulou M
    Comp Biochem Physiol B; 1990; 95(2):287-94. PubMed ID: 2109668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.