BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8487720)

  • 1. FISH and the technicolour revolution. Molecular cytogenetics and its application in chromosome analysis today.
    Leversha MA
    Med J Aust; 1993 Apr; 158(8):545-51. PubMed ID: 8487720
    [No Abstract]   [Full Text] [Related]  

  • 2. Nonisotopic in situ hybridization. Gene mapping and cytogenetics.
    Bhatt B; Sahinoglu T; Stevens C
    Methods Mol Biol; 1998; 80():405-17. PubMed ID: 9664397
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes.
    Döhner H; Stilgenbauer S; Fischer K; Bentz M; Lichter P
    Leukemia; 1997 Apr; 11 Suppl 2():S19-24. PubMed ID: 9178833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization.
    Gribble SM; Roberts I; Grace C; Andrews KM; Green AR; Nacheva EP
    Cancer Genet Cytogenet; 2000 Apr; 118(1):1-8. PubMed ID: 10731582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytogenetics labs embrace FISH.
    Check WA
    CAP Today; 1996 Mar; 10(3):1, 10-2, 14 passim. PubMed ID: 10160263
    [No Abstract]   [Full Text] [Related]  

  • 6. Molecular analysis of chromosome aberrations. In situ hybridization.
    Lichter P; Ried T
    Methods Mol Biol; 1994; 29():449-78. PubMed ID: 8032422
    [No Abstract]   [Full Text] [Related]  

  • 7. Detection of chromosomal aberrations by means of molecular cytogenetics: painting of chromosomes and chromosomal subregions and comparative genomic hybridization.
    Lichter P; Bentz M; Joos S
    Methods Enzymol; 1995; 254():334-59. PubMed ID: 8531697
    [No Abstract]   [Full Text] [Related]  

  • 8. Fluorescent in situ hybridization as an adjunct to conventional cytogenetics.
    Mark HF
    Ann Clin Lab Sci; 1994; 24(2):153-63. PubMed ID: 8203823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FISH of Alu-PCR-amplified YAC clones and applications in tumor cytogenetics.
    Lengauer C; Speicher MR; Cremer T
    Methods Mol Biol; 1994; 33():85-94. PubMed ID: 7894595
    [No Abstract]   [Full Text] [Related]  

  • 10. Detection of chromosomal abnormalities of chromosome 12 in uterine leiomyoma using fluorescence in situ hybridization.
    Hayashi S; Miharu N; Okamoto E; Samura O; Hara T; Ohama K
    Jpn J Hum Genet; 1996 Mar; 41(1):193-202. PubMed ID: 8914635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization.
    Naumann S; Reutzel D; Speicher M; Decker HJ
    Leuk Res; 2001 Apr; 25(4):313-22. PubMed ID: 11248328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Inter-chromosomal Stable Aberrations by Multiple Fluorescence In Situ Hybridization (mFISH) and Spectral Karyotyping (SKY) in Irradiated Mice.
    Pathak R; Koturbash I; Hauer-Jensen M
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromothripsis Detectable in Small Supernumerary Marker Chromosomes (sSMC) Using Fluorescence In Situ Hybridization (FISH).
    Liehr T
    Methods Mol Biol; 2018; 1769():79-84. PubMed ID: 29564819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of current molecular cytogenetic protocols for the diagnosis of chromosome aberrations in tumor specimens.
    Lichter P; Fischer K; Joos S; Fink T; Baudis M; Potkul RK; Ohl S; Solinas-Toldo S; Weber R; Stilgenbauer S; Bentz M; Döhner H
    Cytokines Mol Ther; 1996 Sep; 2(3):163-9. PubMed ID: 9384700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution cytogenetic mapping of the short arm of chromosome 1 with newly isolated 411 cosmid markers by fluorescence in situ hybridization: the precise order of 18 markers on 1p36.1 on prophase chromosomes and "stretched" DNAs.
    Ariyama T; Inazawa J; Ezaki T; Nakamura Y; Horii A; Abe T
    Genomics; 1995 Jan; 25(1):114-23. PubMed ID: 7774908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FISH (fluorescent in situ hybridization): the second youth of cytogenetics.
    Mecucci C
    Haematologica; 1995; 80(2):95-7. PubMed ID: 7503878
    [No Abstract]   [Full Text] [Related]  

  • 17. Mapping and chromosome analysis: the potential of fluorescence in situ hybridization.
    Joos S; Fink TM; Rätsch A; Lichter P
    J Biotechnol; 1994 Jun; 35(2-3):135-53. PubMed ID: 7765054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence in situ hybridization (FISH)--application in research and diagnostics.
    Budny B; Kanik M; Latos-Bieleńiska A
    Folia Histochem Cytobiol; 2002; 40(2):107-8. PubMed ID: 12056601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Genes and chromosomes: imaging in genetics].
    Jonveaux P
    Rev Prat; 1997 Jan; 47(2):140-5. PubMed ID: 9157511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Diagnosis of aneuploidy with fluorescence in situ hybridization (FISH); value in pregnancies with increased risk for chromosome aberrations].
    Ulmer R; Pfeiffer RA; Kollert A; Beinder E
    Z Geburtshilfe Neonatol; 2000; 204(1):1-7. PubMed ID: 10721179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.