These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8488085)

  • 1. A force transducer and a length-ramp generator for mechanical investigations of frog-heart myocytes.
    Cecchi G; Colomo F; Poggesi C; Tesi C
    Pflugers Arch; 1993 Apr; 423(1-2):113-20. PubMed ID: 8488085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Taking the first steps in contraction mechanics of single myocytes from frog heart.
    Brandt PW; Colomo F; Poggesi C; Tesi C
    Adv Exp Med Biol; 1993; 332():627-37. PubMed ID: 8109374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stimulus interval-tension relation in enzymatically isolated single myocytes of the frog heart.
    Cecchi G; Colomo F; Poggesi C; Tesi C
    J Physiol; 1992 Mar; 448():275-91. PubMed ID: 1593468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force responses to rapid length changes in single intact cells from frog heart.
    Colomo F; Poggesi C; Tesi C
    J Physiol; 1994 Mar; 475(2):347-50. PubMed ID: 8021840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contraction and relaxation of isolated cardiac myocytes of the frog under varying mechanical loads.
    Parikh SS; Zou SZ; Tung L
    Circ Res; 1993 Feb; 72(2):297-311. PubMed ID: 8418985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Null-balance transducer for isometric force measurements and length control of single heart cells.
    Luo CH; Tung L
    IEEE Trans Biomed Eng; 1991 Dec; 38(12):1165-74. PubMed ID: 1774078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An internal viscous element limits unloaded velocity of sarcomere shortening in rat myocardium.
    de Tombe PP; ter Keurs HE
    J Physiol; 1992 Aug; 454():619-42. PubMed ID: 1474506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension responses to sudden length change in stimulated frog muscle fibres near slack length.
    Ford LE; Huxley AF; Simmons RM
    J Physiol; 1977 Jul; 269(2):441-515. PubMed ID: 302333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of isolated cardiac myocytes.
    Brady AJ
    Physiol Rev; 1991 Apr; 71(2):413-28. PubMed ID: 2006219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A force transducer for measuring mechanical properties of single cardiac myocytes.
    Tasche C; Meyhöfer E; Brenner B
    Am J Physiol; 1999 Dec; 277(6):H2400-8. PubMed ID: 10600861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active force in rabbit ventricular myocytes.
    Bluhm WF; McCulloch AD; Lew WY
    J Biomech; 1995 Sep; 28(9):1119-22. PubMed ID: 7559682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics.
    Granzier H; Helmes M; Trombitás K
    Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of velocity of sarcomere shortening in mammalian myocardium.
    ter Keurs HE; de Tombe PP
    Adv Exp Med Biol; 1993; 332():649-64; discussion 664-5. PubMed ID: 8109376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The contractile response during steady lengthening of stimulated frog muscle fibres.
    Lombardi V; Piazzesi G
    J Physiol; 1990 Dec; 431():141-71. PubMed ID: 2100305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A modular instrument for exploring the mechanics of cardiac myocytes.
    Garcia-Webb MG; Taberner AJ; Hogan NC; Hunter IW
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H866-74. PubMed ID: 17308002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Passive stiffness of rat cardiac myocytes.
    Brady AJ
    J Biomech Eng; 1984 Feb; 106(1):25-30. PubMed ID: 6727310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of calcium on shortening velocity in frog chemically skinned atrial myocytes and in mechanically disrupted ventricular myocardium from rat.
    Hofmann PA; Moss RL
    Circ Res; 1992 May; 70(5):885-92. PubMed ID: 1568299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myofilament spacing and force generation in intact frog muscle fibres.
    Bagni MA; Cecchi G; Colomo F
    J Physiol; 1990 Nov; 430():61-75. PubMed ID: 2086776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method to study contraction characteristics of a single cardiac myocyte using carbon fibers.
    Yasuda SI; Sugiura S; Kobayakawa N; Fujita H; Yamashita H; Katoh K; Saeki Y; Kaneko H; Suda Y; Nagai R; Sugi H
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1442-6. PubMed ID: 11514317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Titin develops restoring force in rat cardiac myocytes.
    Helmes M; Trombitás K; Granzier H
    Circ Res; 1996 Sep; 79(3):619-26. PubMed ID: 8781495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.