These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 8488162)
1. [The stimulation and inhibition of the secondary growth of microorganisms by metals]. Aĭtkhozhina NA; Faĭn ME; Nikitina ET Prikl Biokhim Mikrobiol; 1993; 29(2):292-8. PubMed ID: 8488162 [TBL] [Abstract][Full Text] [Related]
2. [Yeasts--biosorbents of heavy metals]. Podgorskiĭ VS; Kasatkina TP; Lozovaia OG Mikrobiol Z; 2004; 66(1):91-103. PubMed ID: 15104060 [TBL] [Abstract][Full Text] [Related]
3. Estimation of growth inhibition by copper and cadmium in heavy metal tolerant actinomycetes. Amoroso MJ; Oliver G; Castro GR J Basic Microbiol; 2002; 42(4):231-7. PubMed ID: 12210546 [TBL] [Abstract][Full Text] [Related]
4. Growth mechanisms and growth kinetics of filamentous microorganisms. Prosser JI; Tough AJ Crit Rev Biotechnol; 1991; 10(4):253-74. PubMed ID: 2070422 [TBL] [Abstract][Full Text] [Related]
5. Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany. Ehrman JM; Bärlocher F; Wennrich R; Krauss GJ; Krauss G Sci Total Environ; 2008 Jan; 389(2-3):486-96. PubMed ID: 17928036 [TBL] [Abstract][Full Text] [Related]
6. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Schützendübel A; Polle A J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381 [TBL] [Abstract][Full Text] [Related]
7. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Zafar S; Aqil F; Ahmad I Bioresour Technol; 2007 Sep; 98(13):2557-61. PubMed ID: 17113284 [TBL] [Abstract][Full Text] [Related]
8. In vitro effect of certain fungicides and antibiotics on germination and mycelial growth of two phytopathogenic fungi. Patil AS; Rao VG Hindustan Antibiot Bull; 1972; 15(1):34-9. PubMed ID: 4665131 [No Abstract] [Full Text] [Related]
9. Concurrent sorption of Zn(II), Cu(II) and Co(II) by Oscillatoria angustissima as a function of pH in binary and ternary metal solutions. Mohapatra H; Gupta R Bioresour Technol; 2005 Aug; 96(12):1387-98. PubMed ID: 15792587 [TBL] [Abstract][Full Text] [Related]
10. Metal tolerance and biosorption capacity of Bacillus circulans strain EB1. Yilmaz EI Res Microbiol; 2003; 154(6):409-15. PubMed ID: 12892847 [TBL] [Abstract][Full Text] [Related]
11. Metal bioremediation through growing cells. Malik A Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114 [TBL] [Abstract][Full Text] [Related]
12. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Chen X; Shi J; Chen Y; Xu X; Xu S; Wang Y Can J Microbiol; 2006 Apr; 52(4):308-16. PubMed ID: 16699581 [TBL] [Abstract][Full Text] [Related]
13. Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. Haferburg G; Merten D; Büchel G; Kothe E J Basic Microbiol; 2007 Dec; 47(6):474-84. PubMed ID: 18072248 [TBL] [Abstract][Full Text] [Related]
14. Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). Saeed A; Iqbal M; Akhtar MW J Hazard Mater; 2005 Jan; 117(1):65-73. PubMed ID: 15621354 [TBL] [Abstract][Full Text] [Related]
15. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Gamalero E; Lingua G; Berta G; Glick BR Can J Microbiol; 2009 May; 55(5):501-14. PubMed ID: 19483778 [TBL] [Abstract][Full Text] [Related]
16. [Comparative study of the effect of the metals Ag, Cu, Zn and Al in the form of a highly dispersed powder and salt on Escherichia coli B. growth]. Fedorov IuI; Volodina LA; Kuzovnikova TA; Lebedev VS Izv Akad Nauk SSSR Biol; 1983; (6):948-50. PubMed ID: 6361085 [No Abstract] [Full Text] [Related]
17. Effects of carbofuran and the corn rhizosphere on growth of soil microorganisms. Wootton MA; Kremer RJ; Keaster AJ Bull Environ Contam Toxicol; 1993 Jan; 50(1):49-56. PubMed ID: 8418938 [No Abstract] [Full Text] [Related]
18. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing. Chaturvedi PK; Seth CS; Misra V J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of lead, copper, and zinc retention by phosphate rock. Cao X; Ma LQ; Rhue DR; Appel CS Environ Pollut; 2004 Oct; 131(3):435-44. PubMed ID: 15261407 [TBL] [Abstract][Full Text] [Related]
20. Impact of industrial waste water effluents on mycoflora of the shore sediments of the 3rd oxidation pond, with reference to biosorption of heavy metals. Sharaf EF Acta Microbiol Pol; 2002; 51(3):293-306. PubMed ID: 12588104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]