These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 848909)
1. [Chronic granulomatous disease (CGD): in vitro enhancement of bactericidal activity of CGD phagocytes by rifampicin]. Samson J; Lapointe N Ann Immunol (Paris); 1977; 128(1-2):75-6. PubMed ID: 848909 [TBL] [Abstract][Full Text] [Related]
2. Quantitative measurement of the bactericidal capability of neutrophils from patients and carriers of chronic granulomatous disease. Repine JE; Clawson CC J Lab Clin Med; 1977 Sep; 90(3):522-8. PubMed ID: 408453 [TBL] [Abstract][Full Text] [Related]
3. Staphylococci surviving intracellularly in phagocytes from patients suffering from chronic granulomatous disease are killed in vitro by antibiotics encapsulated in liposomes. Roesler J; Hockertz S; Vogt B; Lohmann-Matthes ML J Clin Invest; 1991 Oct; 88(4):1224-9. PubMed ID: 1918376 [TBL] [Abstract][Full Text] [Related]
4. Application of a fluorochrome-lysostaphin assay to the detection of phagocytic and bactericidal disturbances in human neutrophils and monocytes. Bellinati-Pires R; Salgado MM; Hypolito IP; Grumach AS; Carneiro-Sampaio MM J Investig Allergol Clin Immunol; 1995; 5(6):337-42. PubMed ID: 8653222 [TBL] [Abstract][Full Text] [Related]
5. Activity of antibiotics in chronic granulomatous disease leukocytes. Jacobs RF; Wilson CB Pediatr Res; 1983 Nov; 17(11):916-9. PubMed ID: 6646904 [TBL] [Abstract][Full Text] [Related]
6. In vitro efficacy of several antibiotics against intracellular S. aureus in chronic granulomatous disease. Zimmerli W; Lew PD; Suter S; Wyss M; Waldvogel FA Helv Paediatr Acta; 1983 Mar; 38(1):51-61. PubMed ID: 6862995 [TBL] [Abstract][Full Text] [Related]
7. Neutrophil bactericidal activity against Staphylococcus aureus adherent on biological surfaces. Surface-bound extracellular matrix proteins activate intracellular killing by oxygen-dependent and -independent mechanisms. Hermann M; Jaconi ME; Dahlgren C; Waldvogel FA; Stendahl O; Lew DP J Clin Invest; 1990 Sep; 86(3):942-51. PubMed ID: 2394841 [TBL] [Abstract][Full Text] [Related]
8. Chronic granulomatous disease: uptake and intracellular activity of fosfomycin in granulocytes. Höger PH; Seger RA; Schaad UB; Hitzig WH Pediatr Res; 1985 Jan; 19(1):38-44. PubMed ID: 3969311 [TBL] [Abstract][Full Text] [Related]
9. Reconstitution of defective phagocyte function in chronic granulomatous disease of childhood with recombinant human interferon-gamma. Gallin JI; Sechler JM; Malech HL Trans Assoc Am Physicians; 1988; 101():12-7. PubMed ID: 2855896 [No Abstract] [Full Text] [Related]
10. PEGylated D-amino acid oxidase restores bactericidal activity of neutrophils in chronic granulomatous disease via hypochlorite. Nakamura H; Fang J; Mizukami T; Nunoi H; Maeda H Exp Biol Med (Maywood); 2012 Jun; 237(6):703-8. PubMed ID: 22715431 [TBL] [Abstract][Full Text] [Related]
11. Cellular and molecular effects of recombinant interferon gamma in chronic granulomatous disease. Newburger PE; Ezekowitz RA Hematol Oncol Clin North Am; 1988 Jun; 2(2):267-76. PubMed ID: 2839459 [TBL] [Abstract][Full Text] [Related]
12. Intracellular bactericidal effects of rifampicin in both normal and chronic ganulomatous disease polymorphs. Ezer G; Soothill JF Arch Dis Child; 1974 Jun; 49(6):463-6. PubMed ID: 4852534 [TBL] [Abstract][Full Text] [Related]
13. 6-formylpterin intracellularly generates hydrogen peroxide and restores the impaired bactericidal activity of human neutrophils. Yamashita K; Arai T; Fukuda K; Mori H; Ishii H; Nishioka M; Tajima K; Makino K; Sasada M Biochem Biophys Res Commun; 2001 Nov; 289(1):85-90. PubMed ID: 11708781 [TBL] [Abstract][Full Text] [Related]
14. Effects of ascorbic acid on neutrophil function. Studies on normal and chronic granulomatous disease neutrophils. Patrone F; Dallegri F; Bonvini E; Minervini F; Sacchetti C Acta Vitaminol Enzymol; 1982; 4(1-2):163-8. PubMed ID: 7124564 [TBL] [Abstract][Full Text] [Related]
15. Abnormal bactericidal, metabolic, and lysosomal functions of Chediak-Higashi Syndrome leukocytes. Root RK; Rosenthal AS; Balestra DJ J Clin Invest; 1972 Mar; 51(3):649-65. PubMed ID: 4400956 [TBL] [Abstract][Full Text] [Related]
16. In vitro and ex vivo influence of rifamycins on human phagocytes. Bersani C; Bertoletti R; Colombo ML; Merlini C; Uccelli M; Fietta A; Gialdroni Grassi G Chemioterapia; 1987 Dec; 6(6):420-5. PubMed ID: 3435923 [TBL] [Abstract][Full Text] [Related]
17. [Chronic granulomatous disease (CGD): dysfunction of the neutrophil granulocyte NADPH-oxidase enzyme system]. Német K; Fekete G; Schuler D; Kiss E; Mészner Z; Kriván G; Kardos G; Galántai I; Póder G; Kalmár A; de Boer M; Roos D Orv Hetil; 1997 Feb; 138(7):397-401. PubMed ID: 9091840 [TBL] [Abstract][Full Text] [Related]
18. Recombinant human interferon-gamma reconstitutes defective phagocyte function in patients with chronic granulomatous disease of childhood. Sechler JM; Malech HL; White CJ; Gallin JI Proc Natl Acad Sci U S A; 1988 Jul; 85(13):4874-8. PubMed ID: 2838849 [TBL] [Abstract][Full Text] [Related]
19. Chronic granulomatous disease of childhood: differential diagnosis and prognosis. Grumach AS; Bellinai-Pires R; Araujo IS; Gonzalez CH; Carneiro-Sampaio MM Rev Paul Med; 1993; 111(6):472-6. PubMed ID: 8052796 [TBL] [Abstract][Full Text] [Related]
20. Chronic granulomatous disease. Expression of the metabolic defect by in vitro culture of bone marrow progenitors. Newburger PE; Kruskall MS; Rappeport JM; Robinson SH; Chovaniec ME; Cohen HJ J Clin Invest; 1980 Sep; 66(3):599-602. PubMed ID: 6249853 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]