These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 848947)
1. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose in single-stage continuous culture. Gill CO; Hall MJ; Ratledge C Appl Environ Microbiol; 1977 Feb; 33(2):231-9. PubMed ID: 848947 [TBL] [Abstract][Full Text] [Related]
2. A comparison of the oleaginous yeast, Candida curvata, grown on different carbon sources in continuous and batch culture. Evans CT; Ratledge C Lipids; 1983 Sep; 18(9):623-9. PubMed ID: 6633167 [TBL] [Abstract][Full Text] [Related]
3. [Effects of dilution rate and carbon-to-nitrogen ratio on lipid accumulation by Rhodosporidium toruloides under chemostat conditions]. Shen H; Jin G; Hu C; Gong Z; Bai F; Zhao ZK Sheng Wu Gong Cheng Xue Bao; 2012 Jan; 28(1):56-64. PubMed ID: 22667109 [TBL] [Abstract][Full Text] [Related]
4. Mathematical modelling of lipid production by oleaginous yeasts in continuous cultures. Ykema A; Verbree EC; van Verseveld HW; Smit H Antonie Van Leeuwenhoek; 1986; 52(6):491-506. PubMed ID: 3813522 [TBL] [Abstract][Full Text] [Related]
5. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production. Dey P; Maiti MK J Appl Microbiol; 2013 May; 114(5):1357-68. PubMed ID: 23311514 [TBL] [Abstract][Full Text] [Related]
6. Candida zeylanoides as a new yeast model for lipid metabolism studies: effect of nitrogen sources on fatty acid accumulation. da Rosa PD; Mattanna P; Carboni D; Amorim L; Richards N; Valente P Folia Microbiol (Praha); 2014 Nov; 59(6):477-84. PubMed ID: 24879093 [TBL] [Abstract][Full Text] [Related]
7. [Influence of carbon source on lipid biosynthesis by Candida gluilliermondii]. Eliseeva LG; Gololobov AD; Gracheva IM Mikrobiologiia; 1977; 46(2):263-9. PubMed ID: 882010 [TBL] [Abstract][Full Text] [Related]
8. Lipid accumulation in an oleaginous yeast (Candida 107) growing on glucose under various conditions in a one- and two-stage continuous culture. Hall MJ; Ratledge C Appl Environ Microbiol; 1977 Mar; 33(3):577-84. PubMed ID: 16345210 [TBL] [Abstract][Full Text] [Related]
9. Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Wang Y; Rischer H; Eriksen NT; Wiebe MG Bioresour Technol; 2013 Sep; 144():608-14. PubMed ID: 23907064 [TBL] [Abstract][Full Text] [Related]
10. On multiple-nutrient-limited growth of microorganisms, with special reference to dual limitation by carbon and nitrogen substrates. Egli T Antonie Van Leeuwenhoek; 1991; 60(3-4):225-34. PubMed ID: 1687236 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous high nutritional single cell oil and lipase production by Candida viswanathii. Dias KB; Oliveira NML; Brasil BSAF; Vieira-Almeida EC; Paula-Elias FC; Almeida AF Acta Sci Pol Technol Aliment; 2021; 20(1):93-102. PubMed ID: 33449523 [TBL] [Abstract][Full Text] [Related]
12. Lipid components of the hydrocarbon assimilating yeast Candida lipolytica (strain 10). Jwanny EW Z Allg Mikrobiol; 1975; 15(6):423-39. PubMed ID: 1199134 [TBL] [Abstract][Full Text] [Related]
13. Influence of specific growth limitation and dilution rate on the phosphorylation efficiency and cytochrome content of mitochondria of Candida utilis NCYC 321. Aiking H; Sterkenburg A; Tempest DW Arch Microbiol; 1977 May; 113(1-2):65-72. PubMed ID: 560833 [TBL] [Abstract][Full Text] [Related]
14. Growth and physiology of Candida utilis NCYC 321 in potassium-limited chemostat culture. Aiking H; Tempest DW Arch Microbiol; 1976 May; 108(1):117-24. PubMed ID: 945045 [TBL] [Abstract][Full Text] [Related]
15. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. Larsson C; von Stockar U; Marison I; Gustafsson L J Bacteriol; 1993 Aug; 175(15):4809-16. PubMed ID: 8335637 [TBL] [Abstract][Full Text] [Related]
16. Lipid droplets accumulation and other biochemical changes induced in the fungal pathogen Ustilago maydis under nitrogen-starvation. Aguilar LR; Pardo JP; Lomelí MM; Bocardo OIL; Juárez Oropeza MA; Guerra Sánchez G Arch Microbiol; 2017 Oct; 199(8):1195-1209. PubMed ID: 28550409 [TBL] [Abstract][Full Text] [Related]
17. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. Botham PA; Ratledge C J Gen Microbiol; 1979 Oct; 114(2):361-75. PubMed ID: 44315 [TBL] [Abstract][Full Text] [Related]
18. Oxygen demand by lipid-accumulating yeasts in continuous culture. Ratledge C; Hall MJ Appl Environ Microbiol; 1977 Aug; 34(2):230-1. PubMed ID: 562130 [TBL] [Abstract][Full Text] [Related]
19. Lipid metabolism and cell composition of the oleaginous yeast Apiotrichum curvatum grown at different carbon to nitrogen ratios. Park WS; Murphy PA; Glatz BA Can J Microbiol; 1990 May; 36(5):318-26. PubMed ID: 2390744 [TBL] [Abstract][Full Text] [Related]
20. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Papanikolaou S; Sarantou S; Komaitis M; Aggelis G J Appl Microbiol; 2004; 97(4):867-75. PubMed ID: 15357737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]