These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 848947)

  • 21. [Effect of temperature and nitrogen source on lipid biosynthesis by yeast grown on n-alkanes].
    Greshnykh KP; Grigorian AN; Dikanskaia EM; Diatlovitskaia EV; Bergel'son LD
    Mikrobiologiia; 1968; 37(2):251-4. PubMed ID: 5732069
    [No Abstract]   [Full Text] [Related]  

  • 22. Direct transesterification of fatty acids produced by Fusarium solani for biodiesel production: effect of carbon and nitrogen on lipid accumulation in the fungal biomass.
    Rasmey AM; Tawfik MA; Abdel-Kareem MM
    J Appl Microbiol; 2020 Apr; 128(4):1074-1085. PubMed ID: 31802586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation.
    Kolouchová I; Maťátková O; Sigler K; Masák J; Řezanka T
    Folia Microbiol (Praha); 2016 Sep; 61(5):431-8. PubMed ID: 26931336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of temperature variation on the fatty acid composition of Candida utilis.
    McMurrough I; Rose AH
    J Bacteriol; 1971 Sep; 107(3):753-8. PubMed ID: 5095287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid production by yeasts grown on crude glycerol from biodiesel industry.
    Souza KS; Ramos CL; Schwan RF; Dias DR
    Prep Biochem Biotechnol; 2017 Apr; 47(4):357-363. PubMed ID: 27737603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatty-acid composition of Candida utilis as affected by growth temperature and dissolved-oxygen tension.
    Brown CM; Rose AH
    J Bacteriol; 1969 Aug; 99(2):371-8. PubMed ID: 4897106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of lipid composition of Candida guilliermondii grown on glucose, ethanol and methanol as the sole carbon source.
    Jigami Y; Suzuki O; Nakasato S
    Lipids; 1979 Nov; 14(11):937-42. PubMed ID: 513982
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Effect of carbon source on the Candida spec. H energy reserve metabolism].
    Brückner B; Tröger R
    Z Allg Mikrobiol; 1981; 21(2):77-84. PubMed ID: 7269649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Effect of input nitrogen concentrations on Candida utilis growth in continuous culture with pulsed carbon feed].
    Litvinenko LA; Kintana ME; Petrikevich SB
    Mikrobiologiia; 1980; 49(6):945-51. PubMed ID: 7193796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides.
    Shen H; Gong Z; Yang X; Jin G; Bai F; Zhao ZK
    J Biotechnol; 2013 Oct; 168(1):85-9. PubMed ID: 23965273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of carbon and nitrogen sources on fatty acid contents and composition in the green microalga, Chlorella sp. 227.
    Cho S; Lee D; Luong TT; Park S; Oh YK; Lee T
    J Microbiol Biotechnol; 2011 Oct; 21(10):1073-80. PubMed ID: 22031034
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Production of extracellular higher fatty acids by yeasts grown on hexadecanoic acid].
    Medvedeva TN; Matiashova TN; Lenskikh GV; Romanova IB
    Mikrobiologiia; 1985; 54(1):17-21. PubMed ID: 4040202
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Lipid synthesis by yeasts].
    Piddubniĭ FM; Grinberg TO
    Mikrobiol Zh; 1969; 31(6):683-6. PubMed ID: 4931212
    [No Abstract]   [Full Text] [Related]  

  • 34. Modeling lipid accumulation in oleaginous fungi in chemostat cultures: I. Development and validation of a chemostat model for Umbelopsis isabellina.
    Meeuwse P; Tramper J; Rinzema A
    Bioprocess Biosyst Eng; 2011 Oct; 34(8):939-49. PubMed ID: 21538015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipid droplet formation protects against gluco/lipotoxicity in Candida parapsilosis: an essential role of fatty acid desaturase Ole1.
    Nguyen LN; Nosanchuk JD
    Cell Cycle; 2011 Sep; 10(18):3159-67. PubMed ID: 21897120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling lipid accumulation in oleaginous fungi in chemostat cultures. II: Validation of the chemostat model using yeast culture data from literature.
    Meeuwse P; Tramper J; Rinzema A
    Bioprocess Biosyst Eng; 2011 Oct; 34(8):951-61. PubMed ID: 21516366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical activities during lipid accumulation in Candida curvata.
    Evans CT; Ratledge C
    Lipids; 1983 Sep; 18(9):630-5. PubMed ID: 6633168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [A study of the effect of the nature of the carbon source in nutrient medium on the composition of fatty acids of lipids of Candida tropicalis and Candida intermedia].
    Alimova EK; Astvatsatur'ian AT; Serebrennikova AG
    Ukr Biokhim Zh; 1968; 40(1):79-82. PubMed ID: 5700113
    [No Abstract]   [Full Text] [Related]  

  • 40. Carbon accumulation in Rhodotorula glutinis induced by nitrogen limitation.
    Cescut J; Fillaudeau L; Molina-Jouve C; Uribelarrea JL
    Biotechnol Biofuels; 2014; 7(1):164. PubMed ID: 25520751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.