BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 8489502)

  • 21. Mechanistic stoichiometry of yeast mitochondrial oxidative phosphorylation.
    Fitton V; Rigoulet M; Ouhabi R; Guérin B
    Biochemistry; 1994 Aug; 33(32):9692-8. PubMed ID: 8068647
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of chloroform on mitochondrial energy transduction.
    Chien LF; Brand MD
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):837-45. PubMed ID: 9003370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status.
    Harper ME; Brand MD
    J Biol Chem; 1993 Jul; 268(20):14850-60. PubMed ID: 8392060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential inhibitory effect of long-chain acyl-CoA esters on succinate and glutamate transport into rat liver mitochondria and its possible implications for long-chain fatty acid oxidation defects.
    Ventura FV; Ruiter J; Ijlst L; de Almeida IT; Wanders RJ
    Mol Genet Metab; 2005 Nov; 86(3):344-52. PubMed ID: 16176879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mechanism of reciprocal effects of acetylcholine on oxidation of alpha-ketoglutarate and succinate in heart and liver mitochondria. Factors influencing detection of the acetylcholine effect].
    Doliba MM; Vatamaniuk MZ; Mrvan D; Shostakovs'ka IV; Kondrashova MM
    Ukr Biokhim Zh (1978); 1994; 66(1):41-9. PubMed ID: 7974837
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Substrate oxidation and energy production by Guerin epithelioma mitochondria.
    Pawlicka E; Rzezycki CW
    Arch Geschwulstforsch; 1979; 49(2):124-31. PubMed ID: 224832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment.
    Bohnensack R; Küster U; Letko G
    Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncoupling of mitochondrial oxidative phosphorylation by hexetidine.
    D'Arcangelo G; Barile M; Passarella S; Quagliariello E
    Biochem Biophys Res Commun; 1987 Sep; 147(2):801-8. PubMed ID: 3632700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of mitochondrial membrane fatty acid composition on proton leak and H2O2 production in liver.
    Ramsey JJ; Harper ME; Humble SJ; Koomson EK; Ram JJ; Bevilacqua L; Hagopian K
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jan; 140(1):99-108. PubMed ID: 15621515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localisation of the sites of action of cadmium on oxidative phosphorylation in potato tuber mitochondria using top-down elasticity analysis.
    Kesseler A; Brand MD
    Eur J Biochem; 1994 Nov; 225(3):897-906. PubMed ID: 7957227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat.
    Rolfe DF; Hulbert AJ; Brand MD
    Biochim Biophys Acta; 1994 Dec; 1188(3):405-16. PubMed ID: 7803454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Control of respiration and oxidative phosphorylation in isolated rat liver cells.
    Brown GC; Lakin-Thomas PL; Brand MD
    Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ATP-to-oxygen stoichiometries of oxidative phosphorylation by rat liver mitochondria. An analysis of ADP-induced oxygen jumps by linear nonequilibrium thermodynamics.
    Lemasters JJ
    J Biol Chem; 1984 Nov; 259(21):13123-30. PubMed ID: 6548475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP; Balaban RS
    Biochim Biophys Acta; 1987 Oct; 893(3):398-408. PubMed ID: 2888484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of oxidative phosphorylation in AS-30D hepatoma mitochondria.
    López-Gómez FJ; Torres-Márquez ME; Moreno-Sánchez R
    Int J Biochem; 1993 Mar; 25(3):373-7. PubMed ID: 8096469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. P/O ratios reassessed: mitochondrial P/O ratios consistently exceed 1.5 with succinate and 2.5 with NAD-linked substrates.
    Lee CP; Gu Q; Xiong Y; Mitchell RA; Ernster L
    FASEB J; 1996 Feb; 10(2):345-50. PubMed ID: 8641569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of polyunsaturated fatty acids deficiency on oxidative phosphorylation in rat liver mitochondria.
    Fontaine EM; Moussa M; Devin A; Garcia J; Ghisolfi J; Rigoulet M; Leverve XM
    Biochim Biophys Acta; 1996 Sep; 1276(3):181-7. PubMed ID: 8856103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Steady-state H+/O stoichiometry of liver mitochondria.
    Al-Shawi MK; Brand MD
    Biochem J; 1981 Dec; 200(3):539-46. PubMed ID: 6282251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of acidosis on canine hepatic and renal oxidative phosphorylation.
    Fry DE; Ratcliffe DJ; Yates JR
    Surgery; 1980 Aug; 88(2):269-73. PubMed ID: 7394707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanistic stoichiometry of mitochondrial oxidative phosphorylation.
    Hinkle PC; Kumar MA; Resetar A; Harris DL
    Biochemistry; 1991 Apr; 30(14):3576-82. PubMed ID: 2012815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.