BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8489519)

  • 1. 8-vinyl reduction and chlorophyll a biosynthesis in higher plants.
    Whyte BJ; Griffiths WT
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):939-44. PubMed ID: 8489519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme.
    Parham R; Rebeiz CA
    Biochemistry; 1992 Sep; 31(36):8460-4. PubMed ID: 1390630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast biogenesis. Demonstration of the monovinyl and divinyl monocarboxylic routes of chlorophyll biosynthesis in higher plants.
    Tripathy BC; Rebeiz CA
    J Biol Chem; 1986 Oct; 261(29):13556-64. PubMed ID: 3759979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new non-photoreducible protochlorophyll(ide-)-protein: P-649--642 from cucumber cotyledons: NADPH mediation of its transformation to photoreducible P-657--650.
    El Hamouri B; Sironval C
    FEBS Lett; 1979 Jul; 103(2):345-7. PubMed ID: 38146
    [No Abstract]   [Full Text] [Related]  

  • 5. The light intensity dependence of protochlorophyllide photoconversion and its significance to the catalytic mechanism of protochlorophyllide reductase.
    Griffiths WT; McHugh T; Blankenship RE
    FEBS Lett; 1996 Dec; 398(2-3):235-8. PubMed ID: 8977114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature.
    Mohanty S; Grimm B; Tripathy BC
    Planta; 2006 Aug; 224(3):692-9. PubMed ID: 16523349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protochlorophyll and protochlorophyllide as precursors for chlorophyll synthesis in vitro.
    Griffiths WT
    FEBS Lett; 1974 Dec; 49(2):196-200. PubMed ID: 4155375
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of benzimidazole and kinetin on the nicotinamide nucleotide content of senescing wheat leaves.
    Mishra D; Waygood ER
    Can J Biochem; 1968 Feb; 46(2):167-78. PubMed ID: 4384391
    [No Abstract]   [Full Text] [Related]  

  • 9. The effect of light on four protochlorophyllide-binding polypeptides of barley (Hordeum vulgare).
    Redlinger TE; Apel K
    Arch Biochem Biophys; 1980 Mar; 200(1):253-60. PubMed ID: 7362255
    [No Abstract]   [Full Text] [Related]  

  • 10. Light modulation of the activity of protochlorophyllide reductase.
    Mapleston RE; Griffiths WT
    Biochem J; 1980 Jul; 189(1):125-33. PubMed ID: 7458898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protochlorophyllide reduction: a key step in the greening of plants.
    Fujita Y
    Plant Cell Physiol; 1996 Jun; 37(4):411-21. PubMed ID: 8759912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction.
    Reinbothe C; El Bakkouri M; Buhr F; Muraki N; Nomata J; Kurisu G; Fujita Y; Reinbothe S
    Trends Plant Sci; 2010 Nov; 15(11):614-24. PubMed ID: 20801074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring.
    Walker CJ; Mansfield KE; Smith KM; Castelfranco PA
    Biochem J; 1989 Jan; 257(2):599-602. PubMed ID: 2930469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Light-induced reduction of protochlorophyllide in angiosperms and chloroplast development].
    Myśliwa-Kurdziel B; Strzałka K
    Postepy Biochem; 2010; 56(4):418-26. PubMed ID: 21473046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MGDG, PG and SQDG regulate the activity of light-dependent protochlorophyllide oxidoreductase.
    Gabruk M; Mysliwa-Kurdziel B; Kruk J
    Biochem J; 2017 Mar; 474(7):1307-1320. PubMed ID: 28188256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extinction of the in-vivo low-temperature fluorescence of chlorophyll a by long-wavelength-absorbing quenchers formed from protochlorophyllide.
    Dujardin E
    Prog Clin Biol Res; 1982; 102 Pt B():43-52. PubMed ID: 7163179
    [No Abstract]   [Full Text] [Related]  

  • 17. [Investigation of the initial steps of protochlorophyllide photoreduction in etiolated plants].
    Losev AP; Lial'kova ND
    Mol Biol (Mosk); 1979; 13(4):837-44. PubMed ID: 470941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protochlorophyllide oxidoreductase B-catalyzed protochlorophyllide photoreduction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plants.
    Lebedev N; Timko MP
    Proc Natl Acad Sci U S A; 1999 Aug; 96(17):9954-9. PubMed ID: 10449801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of illumination of whole barley plants on the protochlorophyllide-activating system in the isolated plastids.
    Mapleston RE; Griffiths WT
    Biochem Soc Trans; 1977; 5(1):319-21. PubMed ID: 892198
    [No Abstract]   [Full Text] [Related]  

  • 20. Properties and regulation of leaf nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase and 'malic' enzyme in plants with the C4-dicarboxylic acid pathway of photosynthesis.
    Johnson HS; Hatch MD
    Biochem J; 1970 Sep; 119(2):273-80. PubMed ID: 4395182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.