These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 848954)

  • 41. Utilization of algal polysaccharides by human colonic bacteria, in axenic culture or in association with hydrogenotrophic microorganisms.
    Rochet V; Bernalier A
    Reprod Nutr Dev; 1997; 37(2):221-9. PubMed ID: 9178362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fermentation of xylose and hemicellulose hydrolysates by an ethanol-adapted culture of Bacteroides polypragmatus.
    Patel GB; MacKenzie CR; Agnew BJ
    Arch Microbiol; 1986 Oct; 146(1):68-73. PubMed ID: 3813774
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction of arabinogalactan with mucins.
    Moschini R; Gini F; Cappiello M; Balestri F; Falcone G; Boldrini E; Mura U; Del-Corso A
    Int J Biol Macromol; 2014 Jun; 67():446-51. PubMed ID: 24726529
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice.
    Salyers AA; Pajeau M; McCarthy RE
    Appl Environ Microbiol; 1988 Aug; 54(8):1970-6. PubMed ID: 2845859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The control and consequences of bacterial fermentation in the human colon.
    Cummings JH; Macfarlane GT
    J Appl Bacteriol; 1991 Jun; 70(6):443-59. PubMed ID: 1938669
    [No Abstract]   [Full Text] [Related]  

  • 46. Characteristics of Bacteroides isolates from the cecum of conventional mice.
    Tannock GW
    Appl Environ Microbiol; 1977 Apr; 33(4):745-50. PubMed ID: 869524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon.
    Chassard C; Gaillard-Martinie B; Bernalier-Donadille A
    FEMS Microbiol Lett; 2005 Jan; 242(2):339-44. PubMed ID: 15621457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Glycolytic Versatility of
    Benítez-Páez A; Gómez Del Pulgar EM; Sanz Y
    Front Cell Infect Microbiol; 2017; 7():383. PubMed ID: 28971068
    [No Abstract]   [Full Text] [Related]  

  • 49. Fermentable polysaccharides that enhance fecal bile acid excretion lower plasma cholesterol and apolipoprotein E-rich HDL in rats.
    Moundras C; Behr SR; Demigné C; Mazur A; Rémésy C
    J Nutr; 1994 Nov; 124(11):2179-88. PubMed ID: 7965202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism.
    Samuel BS; Gordon JI
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):10011-6. PubMed ID: 16782812
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation of acharan sulfate and heparin by Bacteroides stercoris HJ-15, a human intestinal bacterium.
    Kim DH; Kim BT; Park SY; Kim NY; Han MJ; Shin KH; Kim WS; Kim YS
    Arch Pharm Res; 1998 Oct; 21(5):576-80. PubMed ID: 9875498
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The relation between bacterial degradation of viscous polysaccharides and stool output in human beings.
    Tomlin J; Read NW
    Br J Nutr; 1988 Nov; 60(3):467-75. PubMed ID: 3219318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enumeration of polysaccharide-degrading Bacteroides species in human feces by using species-specific DNA probes.
    Kuritza AP; Shaughnessy P; Salyers AA
    Appl Environ Microbiol; 1986 Feb; 51(2):385-90. PubMed ID: 3954350
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Utilization of xylan-type polysaccharides in co-culture fermentations of Bifidobacterium and Bacteroides species.
    Zeybek N; Rastall RA; Buyukkileci AO
    Carbohydr Polym; 2020 May; 236():116076. PubMed ID: 32172889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polysaccharides in colon-specific drug delivery.
    Sinha VR; Kumria R
    Int J Pharm; 2001 Aug; 224(1-2):19-38. PubMed ID: 11472812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy sources of major intestinal fermentative anaerobes.
    Salyers AA
    Am J Clin Nutr; 1979 Jan; 32(1):158-63. PubMed ID: 367143
    [No Abstract]   [Full Text] [Related]  

  • 57. The effect of the polysaccharide composition and structure of dietary fibers on cecal fermentation and fecal excretion.
    Eastwood MA; Brydon WG; Anderson DM
    Am J Clin Nutr; 1986 Jul; 44(1):51-5. PubMed ID: 3014854
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin.
    Liu Y; Heath AL; Galland B; Rehrer N; Drummond L; Wu XY; Bell TJ; Lawley B; Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Digestion of larch arabinogalactan by a strain of human colonic Bacteroides growing in continuous culture.
    Salyers AA; Arthur R; Kuritza A
    J Agric Food Chem; 1981; 29(3):475-80. PubMed ID: 7251978
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.