These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8489694)

  • 1. A forecast model for hazel (Corylus) and chestnut (Castanea) pollen emission.
    Mandrioli P; Marletto V; Sirotti M; Puppi G; Zanotti A
    Allerg Immunol (Paris); 1993 Apr; 25(4):141-4. PubMed ID: 8489694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meteorological variation effect on aerobiology--new tools on pollen forecasting.
    Galán C; García-Mozo ; Alcázar H; Dominguez P
    Eur Ann Allergy Clin Immunol; 2006 Jun; 38(6):203-8. PubMed ID: 16929748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom.
    Smith M; Emberlin J
    Clin Exp Allergy; 2005 Oct; 35(10):1400-6. PubMed ID: 16238802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne castanea pollen forecasting model for ecological and allergological implementation.
    Astray G; Fernández-González M; Rodríguez-Rajo FJ; López D; Mejuto JC
    Sci Total Environ; 2016 Apr; 548-549():110-121. PubMed ID: 26802339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting the onset of an allergic risk to poaceae in Nancy and Strasbourg (France) with different methods.
    Cassagne E; Caillaud PD; Besancenot JP; Thibaudon M
    Eur Ann Allergy Clin Immunol; 2007 Oct; 39(8):262-8. PubMed ID: 18237004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.
    Hernández Prieto M; Lorente Toledano F; Romo Cortina A; Dávila González I; Laffond Yges E; Calvo Bullón A
    Allergol Immunopathol (Madr); 1998; 26(5):209-22. PubMed ID: 9885728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change.
    Garcia-Mozo H; Galan C; Jato V; Belmonte J; de la Guardia C; Fernandez D; Gutierrez M; Aira M; Roure J; Ruiz L; Trigo M; Dominguez-Vilches E
    Ann Agric Environ Med; 2006; 13(2):209-24. PubMed ID: 17195993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature influence on differentiation and release of hazel pollen.
    Frenguelli G; Ferranti F; Romano B; Bricchi E; Mincigrucci G; Fornaciari M; Spieksma FT
    Allerg Immunol (Paris); 1993 Apr; 25(4):147-9. PubMed ID: 8489695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Airborne allergenic pollen in natural areas: Hornachuelos Natural Park, Cordoba, southern Spain.
    Garcia-Mozo H; Dominguez-Vilches E; Galan C
    Ann Agric Environ Med; 2007; 14(1):63-9. PubMed ID: 17655179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of pollen counts of Corylus, Alnus and Betula in Szczecin, Warsaw and Lublin (2000-2001).
    Weryszko-Chmielewska E; Puc M; Rapiejko P
    Ann Agric Environ Med; 2001; 8(2):235-40. PubMed ID: 11748882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental factors affecting the start of pollen season and concentrations of airborne Alnus pollen in two localities of Galicia (NW Spain).
    Rodriguez-Rajo FJ; Dopazo A; Jato V
    Ann Agric Environ Med; 2004; 11(1):35-44. PubMed ID: 15236496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobiology of sweet chestnut (Castanea sativa Mill.) in north-west Croatia.
    Hrga I; Mitić B; Alegro A; Dragojlović D; Stjepanović B; Puntarić D
    Coll Antropol; 2010 Jun; 34(2):501-7. PubMed ID: 20698123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season.
    Jato V; Rodríguez-Rajo FJ; Méndez J; Aira MJ
    Int J Biometeorol; 2002 Sep; 46(4):176-84. PubMed ID: 12242473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allergenic airborne grass pollen in Szczecin, Poland.
    Puc M; Puc MI
    Ann Agric Environ Med; 2004; 11(2):237-44. PubMed ID: 15627331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.
    Nowosad J
    Int J Biometeorol; 2016 Jun; 60(6):843-55. PubMed ID: 26487352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Forecast of the beginning day of Japanese cedar pollen release using variation pattern in air temperature].
    Kawashima S; Takahashi Y; Sahashi N
    Arerugi; 1998 Jul; 47(7):649-57. PubMed ID: 9780439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urban meteorological modelling for nuclear emergency preparedness.
    Baklanov A; Sørensen JH; Hoe SC; Amstrup B
    J Environ Radioact; 2006; 85(2-3):154-70. PubMed ID: 16157431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [How to predict the date of the start of the pollination of a plant from the meteorological data: the example of ragweed at Lyon].
    Laaidi M; Thibaudon M; Besancenot JP
    Eur Ann Allergy Clin Immunol; 2004 Sep; 36(7):268-71. PubMed ID: 15529830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Airborne pollen calendar of Lublin, Poland.
    Weryszko-Chmielewska E; Piotrowska K
    Ann Agric Environ Med; 2004; 11(1):91-7. PubMed ID: 15236504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long-range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark.
    Skjøth CA; Sommer J; Stach A; Smith M; Brandt J
    Clin Exp Allergy; 2007 Aug; 37(8):1204-12. PubMed ID: 17651151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.