BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8490231)

  • 1. Application of cryotechniques in cartilage tissue preservation and immunoelectron microscopy: potentials and problems.
    Hunziker EB
    Microsc Res Tech; 1993 Apr; 24(6):457-64. PubMed ID: 8490231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing.
    Hunziker EB; Herrmann W
    J Histochem Cytochem; 1987 Jun; 35(6):647-55. PubMed ID: 3553318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryopreparation of biological specimens for immunoelectron microscopy.
    Möbius W
    Ann Anat; 2009 Jun; 191(3):231-47. PubMed ID: 19264467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine structure of Tritrichomonas foetus as seen using cryotechniques.
    Benchimol M
    Microsc Res Tech; 1994 Sep; 29(1):37-46. PubMed ID: 8000083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.
    Takeuchi M; Takabe K; Mineyuki Y
    Methods Mol Biol; 2010; 657():155-65. PubMed ID: 20602214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos.
    McDonald K; Morphew MK
    Microsc Res Tech; 1993 Apr; 24(6):465-73. PubMed ID: 8490232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved preservation of cartilage extracellular matrix by freeze dried embedding.
    Arsenault AL; Spitzer E; Simon GT
    J Microsc; 1987 Mar; 145(Pt 3):357-60. PubMed ID: 3585997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved ultrastructural preservation of rat ciliary body after high pressure freezing and freeze substitution: a perspective view based upon comparison with tissue processed according to a conventional protocol or by osmium tetroxide/microwave fixation.
    Eggli ES; Graber W
    Microsc Res Tech; 1994 Sep; 29(1):11-22. PubMed ID: 8000081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoelectron microscopy of cryofixed freeze-substituted mammalian tissue culture cells.
    Sawaguchi A
    Methods Mol Biol; 2010; 657():181-90. PubMed ID: 20602216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunogold labeling of cryosections from high-pressure frozen cells.
    van Donselaar E; Posthuma G; Zeuschner D; Humbel BM; Slot JW
    Traffic; 2007 May; 8(5):471-85. PubMed ID: 17451551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructure of hyaline cartilage. I. A comparative study of cartilage from different species and locations, using cryofixation, freeze-substitution and low-temperature embedding techniques.
    Engfeldt B; Hultenby K; Müller M
    Acta Pathol Microbiol Immunol Scand A; 1986 Sep; 94(5):313-23. PubMed ID: 3532690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission electron microscopy of cartilage and bone.
    Keene DR; Tufa SF
    Methods Cell Biol; 2010; 96():443-73. PubMed ID: 20869534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure freezing and freeze substitution of Schizosaccharomyces pombe and Saccharomyces cerevisiae for TEM.
    Murray S
    Methods Cell Biol; 2008; 88():3-17. PubMed ID: 18617025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-pressure freezing and freeze-substitution of native rat brain: suitability for preservation and immunoelectron microscopic localization of myelin glycolipids.
    Kirschning E; Rutter G; Hohenberg H
    J Neurosci Res; 1998 Aug; 53(4):465-74. PubMed ID: 9710266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of cryofixation and cryoultramicrotomy for biological electron microscopy.
    Saga K
    Med Mol Morphol; 2005 Sep; 38(3):155-60. PubMed ID: 16170463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of fungi for ultrastructural investigations and immunogoldlabelling.
    Hause G; Jahn S
    Methods Mol Biol; 2010; 638():291-301. PubMed ID: 20238278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunoelectron Microscopy of Cryofixed and Freeze-Substituted Plant Tissues.
    Takeuchi M; Takabe K; Mineyuki Y
    Methods Mol Biol; 2016; 1474():233-42. PubMed ID: 27515084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intramatrix events during cryopreservation of porcine articular cartilage using rapid cooling.
    Jomha NM; Anoop PC; McGann LE
    J Orthop Res; 2004 Jan; 22(1):152-7. PubMed ID: 14656674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoelectron microscopy of cryofixed freeze-substituted Saccharomyces cerevisiae.
    Fiserova J; Goldberg MW
    Methods Mol Biol; 2010; 657():191-204. PubMed ID: 20602217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved preservation of the subepidermal extracellular matrix in axolotl embryos using electron microscopical techniques based on cryoimmobilization.
    Epperlein HH; Schwarz H; Piendl T; Löfberg J; Studer D; Spring H; Müller M
    J Struct Biol; 1997 Feb; 118(1):43-61. PubMed ID: 9087914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.