These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 8490232)

  • 1. Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos.
    McDonald K; Morphew MK
    Microsc Res Tech; 1993 Apr; 24(6):465-73. PubMed ID: 8490232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scanning electron microscopy of high-pressure-frozen sea urchin embryos.
    Walther P; Chen Y; Malecki M; Zoran SL; Schatten GP; Pawley JB
    Scanning Microsc; 1993 Dec; 7(4):1283-92; discussion 1292-3. PubMed ID: 8023095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of sea urchin calcified tissues after high-pressure freezing and freeze substitution.
    Ameye L; Hermann R; Dubois P
    J Struct Biol; 2000 Aug; 131(2):116-25. PubMed ID: 11042082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-fixation of virulent Mycobacterium tuberculosis with glutaraldehyde preserves exquisite ultrastructure on transmission electron microscopy through cryofixation and freeze-substitution with osmium-acetone at ultralow temperature.
    Yamada H; Chikamatsu K; Aono A; Mitarai S
    J Microbiol Methods; 2014 Jan; 96():50-5. PubMed ID: 24200708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructure of early chick embryo tissues after high pressure freezing and freeze substitution.
    Allenspach A
    Microsc Res Tech; 1993 Apr; 24(5):369-84. PubMed ID: 8318721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High pressure freezing, electron microscopy, and immuno-electron microscopy of Tetrahymena thermophila basal bodies.
    Meehl JB; Giddings TH; Winey M
    Methods Mol Biol; 2009; 586():227-41. PubMed ID: 19768433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.
    Takeuchi M; Takabe K; Mineyuki Y
    Methods Mol Biol; 2010; 657():155-65. PubMed ID: 20602214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-section immunolabelling of difficult to preserve specimens: advantages of cryofixation, freeze-substitution and rehydration.
    Ripper D; Schwarz H; Stierhof YD
    Biol Cell; 2008 Feb; 100(2):109-23. PubMed ID: 17903123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoelectron microscopy of cryofixed freeze-substituted Saccharomyces cerevisiae.
    Fiserova J; Goldberg MW
    Methods Mol Biol; 2010; 657():191-204. PubMed ID: 20602217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunoelectron microscopy of cryofixed freeze-substituted mammalian tissue culture cells.
    Sawaguchi A
    Methods Mol Biol; 2010; 657():181-90. PubMed ID: 20602216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission electron microscopy of thin sections of Drosophila: high-pressure freezing and freeze-substitution.
    McDonald KL; Sharp DJ; Rickoll W
    Cold Spring Harb Protoc; 2012 Apr; 2012(4):510-5. PubMed ID: 22474654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pressure freezing, chemical fixation and freeze-substitution for immuno-electron microscopy.
    Mühlfeld C
    Methods Mol Biol; 2010; 611():87-101. PubMed ID: 19960324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High pressure freezing and freeze substitution of Schizosaccharomyces pombe and Saccharomyces cerevisiae for TEM.
    Murray S
    Methods Cell Biol; 2008; 88():3-17. PubMed ID: 18617025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron microscopy of the early Caenorhabditis elegans embryo.
    Müller-Reichert T; Mäntler J; Srayko M; O'Toole E
    J Microsc; 2008 May; 230(Pt 2):297-307. PubMed ID: 18445160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved preservation of the subepidermal extracellular matrix in axolotl embryos using electron microscopical techniques based on cryoimmobilization.
    Epperlein HH; Schwarz H; Piendl T; Löfberg J; Studer D; Spring H; Müller M
    J Struct Biol; 1997 Feb; 118(1):43-61. PubMed ID: 9087914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron tomography of microtubule end-morphologies in C. elegans embryos.
    O'Toole E; Müller-Reichert T
    Methods Mol Biol; 2009; 545():135-44. PubMed ID: 19475386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of ultrastructural preservation of Eimeria oocysts by microwave-assisted chemical fixation or by high pressure freezing and freeze substitution.
    Kurth T; Wiedmer S; Entzeroth R
    Protist; 2012 Mar; 163(2):296-305. PubMed ID: 21764370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved preservation of fine structure of deep-sea microorganisms by freeze-substitution after glutaraldehyde fixation.
    Yamaguchi M; Namiki Y; Okada H; Uematsu K; Tame A; Maruyama T; Kozuka Y
    J Electron Microsc (Tokyo); 2011; 60(4):283-7. PubMed ID: 21571752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chloroplast ultrastructure in leaves of Urtica dioica L. analyzed after high-pressure freezing and freeze-substitution and compared with conventional fixation followed by room temperature dehydration.
    Pfeiffer S; Krupinska K
    Microsc Res Tech; 2005 Dec; 68(6):368-76. PubMed ID: 16358286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural analysis of myoblast fusion in Drosophila.
    Zhang S; Chen EH
    Methods Mol Biol; 2008; 475():275-97. PubMed ID: 18979250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.