These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 8490253)

  • 61. Light adaptation affects synaptic vesicle density but not the distribution of GABAA receptors in goldfish photoreceptor terminals.
    Yazulla S; Studholme KM
    Microsc Res Tech; 1997 Jan; 36(1):43-56. PubMed ID: 9031260
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Development of the retinal tapetum lucidum of the walleye (Stizostedion vitreum vitreum).
    Braekevelt CR; McIntyre DB; Ward FJ
    Histol Histopathol; 1989 Jan; 4(1):63-70. PubMed ID: 2520447
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina.
    Attwell D; Wilson M; Wu SM
    J Physiol; 1984 Jul; 352():703-37. PubMed ID: 6747904
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Immunocytochemical analysis of GABA-positive and calretinin-positive horizontal cells in the tiger salamander retina.
    Zhang J; Zhang AJ; Wu SM
    J Comp Neurol; 2006 Nov; 499(3):432-41. PubMed ID: 16998928
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Electrical coupling, receptive fields, and relative rod/cone inputs of horizontal cells in the tiger salamander retina.
    Zhang AJ; Zhang J; Wu SM
    J Comp Neurol; 2006 Nov; 499(3):422-31. PubMed ID: 16998920
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Localization of retinal "48K" (S-antigen) by electron microscopy.
    Mangini NJ; Pepperberg DR
    Jpn J Ophthalmol; 1987; 31(2):207-17. PubMed ID: 3118084
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The transcription factor Nr2e3 functions in retinal progenitors to suppress cone cell generation.
    Haider NB; Demarco P; Nystuen AM; Huang X; Smith RS; McCall MA; Naggert JK; Nishina PM
    Vis Neurosci; 2006; 23(6):917-29. PubMed ID: 17266784
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit.
    Barnard AR; Appleford JM; Sekaran S; Chinthapalli K; Jenkins A; Seeliger M; Biel M; Humphries P; Douglas RH; Wenzel A; Foster RG; Hankins MW; Lucas RJ
    Vis Neurosci; 2004; 21(5):675-83. PubMed ID: 15683556
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Localization of GABAA receptor subunits alpha 1, alpha 3, beta 1, beta 2/3, gamma 1, and gamma 2 in the salamander retina.
    Zhang J; De Blas AL; Miralles CP; Yang CY
    J Comp Neurol; 2003 May; 459(4):440-53. PubMed ID: 12687709
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The visual cells of the skate retina: structure, histochemistry, and disc-shedding properties.
    Szamier RB; Ripps H
    J Comp Neurol; 1983 Mar; 215(1):51-62. PubMed ID: 6853765
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Lighting conditions and retinal development in goldfish: photoreceptor number and structure.
    Raymond PA; Bassi CJ; Powers MK
    Invest Ophthalmol Vis Sci; 1988 Jan; 29(1):27-36. PubMed ID: 3335431
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Renewal of normal and degenerating photoreceptor outer segments in the Ozark cave salamander.
    Besharse JC; Hollyfield JG
    J Exp Zool; 1976 Dec; 198(3):287-302. PubMed ID: 1003144
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation.
    Hoang QV; Linsenmeier RA; Chung CK; Curcio CA
    Vis Neurosci; 2002; 19(4):395-407. PubMed ID: 12511073
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure.
    Branchek T; Bremiller R
    J Comp Neurol; 1984 Mar; 224(1):107-15. PubMed ID: 6715574
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Morphological characterization of the retinal degeneration in three strains of mice carrying the rd-3 mutation.
    Linberg KA; Fariss RN; Heckenlively JR; Farber DB; Fisher SK
    Vis Neurosci; 2005; 22(6):721-34. PubMed ID: 16469183
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Data on mitochondrial ultrastructure of photoreceptors in pig, rabbit, and mouse retinas.
    Ozaki T; Utsumi S; Iwamoto T; Tanaka M; Tomita H; Sugano E; Ishiyama E; Ishida K
    Data Brief; 2020 Jun; 30():105544. PubMed ID: 32368587
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fine structure of the retinal photoreceptors of the domestic cat (Felis catus).
    Braekevelt CR
    Anat Histol Embryol; 1990 Mar; 19(1):67-76. PubMed ID: 2375512
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synaptic circuitry mediating light-evoked signals in dark-adapted mouse retina.
    Wu SM; Gao F; Pang JJ
    Vision Res; 2004 Dec; 44(28):3277-88. PubMed ID: 15535995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.