These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 8490530)

  • 21. Influence of changes in stem positioning on femoral loading after THR using a short-stemmed hip implant.
    Speirs AD; Heller MO; Taylor WR; Duda GN; Perka C
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):431-9. PubMed ID: 17275151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessments of different kinds of stems by experiments and FEM analysis: appropriate stress distribution on a hip prosthesis.
    Sakai R; Itoman M; Mabuchi K
    Clin Biomech (Bristol, Avon); 2006 Oct; 21(8):826-33. PubMed ID: 16701927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Photoelastic stress analysis of human femurs before and after implantation of different models of femur neck prostheses].
    Wieners G; Pech M; Streitparth F; Jansson V; Plitz W
    Z Orthop Ihre Grenzgeb; 2007; 145(1):81-7. PubMed ID: 17345548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Stress analysis of an anatomically-adapted femur shaft prosthesis (Lubinus SPII)].
    Alter P; Lengsfeld M; Schmitt J
    Z Orthop Ihre Grenzgeb; 1999; 137(2):129-35. PubMed ID: 10408055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty].
    Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R
    Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical comparison of newly designed stemless prosthesis and conventional hip prosthesis--an experimental study.
    Tai CL; Lee MS; Chen WP; Hsieh PH; Lee PC; Shih CH
    Biomed Mater Eng; 2005; 15(3):239-49. PubMed ID: 15912004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of optimized epoxy graphite implant for the total hip joint.
    Iyer LS; Jayasekaran T; Blunck CF; Selvam RP
    ISA Trans; 1984; 23(2):7-14. PubMed ID: 6746263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of physiological loading in total hip replacements.
    Ramos A; Fonseca F; Simões JA
    J Biomech Eng; 2006 Aug; 128(4):579-87. PubMed ID: 16813449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A method of quantification of stress shielding in the proximal femur using hierarchical computational modeling.
    Be'ery-Lipperman M; Gefen A
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):35-44. PubMed ID: 16880155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of FE idealisation, load conditions and interface assumptions on the stress distribution and fatigue notch factor in the human femur with an endoprosthesis.
    Hedia HS; Barton DC; Fisher J; Elmidany TT
    Biomed Mater Eng; 1996; 6(3):135-52. PubMed ID: 8922259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Realistic loads for testing hip implants.
    Bergmann G; Graichen F; Rohlmann A; Bender A; Heinlein B; Duda GN; Heller MO; Morlock MM
    Biomed Mater Eng; 2010; 20(2):65-75. PubMed ID: 20592444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone remodeling characteristics of a short-stemmed total hip replacement.
    Chen HH; Morrey BF; An KN; Luo ZP
    J Arthroplasty; 2009 Sep; 24(6):945-50. PubMed ID: 18848420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Loss in mechanical contact of cementless acetabular prostheses due to post-operative weight bearing: a biomechanical model.
    Bellini CM; Galbusera F; Ceroni RG; Raimondi MT
    Med Eng Phys; 2007 Mar; 29(2):175-81. PubMed ID: 16569508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations.
    Pal B; Gupta S; New AM; Browne M
    J Biomech; 2010 Jul; 43(10):1923-30. PubMed ID: 20392448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A preliminary biomechanical assessment of a polymer composite hip implant using an infrared thermography technique validated by strain gage measurements.
    Bougherara H; Rahim E; Shah S; Dubov A; Schemitsch EH; Zdero R
    J Biomech Eng; 2011 Jul; 133(7):074503. PubMed ID: 21823752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement.
    Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S
    J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Otto Aufranc Award Paper. An analysis of femoral prosthesis design: the effects on proximal femur loading.
    Crowninshield RD; Brand RA; Johnston RC; Pedersen DR
    Hip; 1981; ():111-22. PubMed ID: 7333883
    [No Abstract]   [Full Text] [Related]  

  • 39. An evaluation of three loading configurations for the in vitro testing of femoral strains in total hip arthroplasty.
    Finlay JB; Chess DG; Hardie WR; Rorabeck CH; Bourne RB
    J Orthop Res; 1991 Sep; 9(5):749-59. PubMed ID: 1870039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty.
    Grochola LF; Habermann B; Mastrodomenico N; Kurth A
    Arch Orthop Trauma Surg; 2008 Apr; 128(4):383-92. PubMed ID: 18038142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.