BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 849061)

  • 1. Effects of probenecid on methotrexate exchange between the blood and the cerebrospinal fluid.
    Domer FR; Kaiser LR
    Arch Int Pharmacodyn Ther; 1977 Jan; 225(1):17-24. PubMed ID: 849061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of methotrexate transport from cerebrospinal fluid by probenecid.
    Spector R
    Cancer Treat Rep; 1976 Jul; 60(7):913-6. PubMed ID: 1009521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of probenecid on brain-cerebrospinal fluid-blood distribution kinetics of E-Delta 2-valproic acid in rabbits.
    Scism JL; Powers KM; Artru AA; Chambers AC; Lewis L; Adkison KK; Kalhorn TF; Shen DD
    Drug Metab Dispos; 1997 Dec; 25(12):1337-46. PubMed ID: 9394022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probenecid inhibition of methotrexate-cerebrospinal fluid pharmacokinetics in dogs.
    Ramu A; Fusner JE; Blaschke T; Glaubiger DL
    Cancer Treat Rep; 1978 Oct; 62(10):1465-70. PubMed ID: 581360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and degradation of [3H]methotrexate after intravenous and cerebral intraventricular injection in primates.
    Kimelberg HK; Biddlecome SM; Bourke RS
    Cancer Res; 1977 Jan; 37(1):157-65. PubMed ID: 401470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of renal tubular transport of methotrexate by probenecid.
    Bourke RS; Chheda G; Bremer A; Watanabe O; Tower DB
    Cancer Res; 1975 Jan; 35(1):110-6. PubMed ID: 1109785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacokinetics of methotrexate in cerebrospinal fluid and serum after osmotic blood-brain barrier disruption in patients with brain lymphoma.
    Zylber-Katz E; Gomori JM; Schwartz A; Lossos A; Bokstein F; Siegal T
    Clin Pharmacol Ther; 2000 Jun; 67(6):631-41. PubMed ID: 10872645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evidence for carrier-mediated efflux transport of 3'-azido-3'-deoxythymidine and 2',3'-dideoxyinosine across the blood-brain barrier via a probenecid-sensitive transport system.
    Takasawa K; Terasaki T; Suzuki H; Sugiyama Y
    J Pharmacol Exp Ther; 1997 Apr; 281(1):369-75. PubMed ID: 9103519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active transport of methotrexate from cerebrospinal fluid in humans.
    Bode U; Magrath IT; Bleyer WA; Poplack DG; Glaubiger DL
    Cancer Res; 1980 Jul; 40(7):2184-7. PubMed ID: 7388786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of methotrexate by the in vitro isolated rabbit proximal tubule.
    Besseghir K; Mosig D; Roch-Ramel F
    J Pharmacol Exp Ther; 1989 Aug; 250(2):688-95. PubMed ID: 2760850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased accumulation of methotrexate by murine tumor cells in vitro in the presence of probenecid which is mediated by a preferential inhibition of efflux.
    Sirotnak FM; Moccio DM; Young CW
    Cancer Res; 1981 Mar; 41(3):966-70. PubMed ID: 7459883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of 2,4,5-trichlorophenoxyacetic acid across the blood-cerebrospinal fluid barrier of the rabbit.
    Kim CS; Pritchard JB
    J Pharmacol Exp Ther; 1993 Nov; 267(2):751-7. PubMed ID: 8246151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of probenecid on 5-hydroxyindoles in cerebrospinal fluid in Down's syndrome.
    Airaksinen EM; Kauko K
    Ann Clin Res; 1973 Dec; 5(6):392-4. PubMed ID: 4275983
    [No Abstract]   [Full Text] [Related]  

  • 14. Accumulation of 3H-homovanillic acid in rabbit brain and cerebrospinal fluid following intravenous 3H-L-dopa.
    Extein I; Roth RH; Bowers MB
    Biol Psychiatry; 1974 Oct; 9(2):161-70. PubMed ID: 4429746
    [No Abstract]   [Full Text] [Related]  

  • 15. Prediction of methotrexate CNS distribution in different species - influence of disease conditions.
    Westerhout J; van den Berg DJ; Hartman R; Danhof M; de Lange EC
    Eur J Pharm Sci; 2014 Jun; 57():11-24. PubMed ID: 24462766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of elimination of methotrexate from the cerebrospinal fluid space of monkeys after ventriculolumbar perfusion.
    Merker PC; Mehta BM; Cantor ML; Hutchison DJ
    Cancer Treat Rep; 1977 Jul; 61(4):603-11. PubMed ID: 406994
    [No Abstract]   [Full Text] [Related]  

  • 17. Probenecid inhibition of methotrexate excretion from cerebrospinal fluid in dogs.
    Ramu A; Glaubiger D; Ramu NP; Eldridge N; Blaschke TF
    J Pharmacokinet Biopharm; 1978 Oct; 6(5):389-97. PubMed ID: 731407
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction of probenecid with methotrexate transport and release in the isolated rat hepatocyte in suspension.
    Gewirtz DA; Plotkin JH; Randolph JK
    Cancer Res; 1984 Sep; 44(9):3846-50. PubMed ID: 6744302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative renal excretion of VX-702, a novel p38 MAPK inhibitor, and methotrexate in the perfused rat kidney model.
    Tamhane M; Chakilam AR; Jayaraj A; Thakkar V; Taft DR
    Drug Dev Ind Pharm; 2010 Mar; 36(3):315-22. PubMed ID: 20170280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolongation and enhancement of serum methotrexate concentrations by probenecid.
    Aherne GW; Piall E; Marks V; Mould G; White WF
    Br Med J; 1978 Apr; 1(6120):1097-9. PubMed ID: 638616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.