These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Influence of different freeze-fracture pretreatments on the fine structure of Physarum polycephalum. A freeze-fracture and freeze-substitution study. Wolf KV; Stockem W; Wohlfarth-Bottermann KE Eur J Cell Biol; 1980 Oct; 22(2):667-77. PubMed ID: 7449775 [TBL] [Abstract][Full Text] [Related]
8. Protein synthesis within neuronal growth cones. Davis L; Dou P; DeWit M; Kater SB J Neurosci; 1992 Dec; 12(12):4867-77. PubMed ID: 1464771 [TBL] [Abstract][Full Text] [Related]
9. Development of cell surface saccharides on embryonic pancreatic cells. Maylié-Pfenninger MF; Jamieson JD J Cell Biol; 1980 Jul; 86(1):96-103. PubMed ID: 7419584 [TBL] [Abstract][Full Text] [Related]
10. Freeze-fracture electron microscopy of simultaneous odontoblast exocytosis and endocytosis in human permanent teeth. Köling A Arch Oral Biol; 1987; 32(3):153-8. PubMed ID: 3478016 [TBL] [Abstract][Full Text] [Related]
11. Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane. Pfenninger KH; Bunge RP J Cell Biol; 1974 Oct; 63(1):180-96. PubMed ID: 4609396 [TBL] [Abstract][Full Text] [Related]
12. PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. Laurino L; Wang XX; de la Houssaye BA; Sosa L; Dupraz S; Cáceres A; Pfenninger KH; Quiroga S J Cell Sci; 2005 Aug; 118(Pt 16):3653-62. PubMed ID: 16046480 [TBL] [Abstract][Full Text] [Related]
13. A comparison of neuronal growth cone and cell body membrane: electrophysiological and ultrastructural properties. Guthrie PB; Lee RE; Kater SB J Neurosci; 1989 Oct; 9(10):3596-605. PubMed ID: 2795144 [TBL] [Abstract][Full Text] [Related]
14. B-50/GAP43 localization in polarized hippocampal neurons in vitro: an ultrastructural quantitative study. Van Lookeren Campagne M; Dotti CG; Jap Tjoen San ER; Verkleij AJ; Gispen WH; Oestreicher AB Neuroscience; 1992 Sep; 50(1):35-52. PubMed ID: 1407559 [TBL] [Abstract][Full Text] [Related]
15. Membrane specializations of neuritic growth cones in vivo: a quantitative IMP analysis. Small RK J Neurosci Res; 1985; 13(1-2):39-53. PubMed ID: 3871864 [TBL] [Abstract][Full Text] [Related]
16. Synaptic membrane domains in photoreceptors of chick retina: a thin-section and a freeze-fracture study. Cooper NG; McLaughlin BJ; Boykins LG J Ultrastruct Res; 1983 Feb; 82(2):172-88. PubMed ID: 6402603 [TBL] [Abstract][Full Text] [Related]
17. Synthesis, storage and release of acetylcholine at and from growth cones of rat central cholinergic neurons in culture. Tatsumi H; Tsuji S; Anglade P; Motelica-Heino I; Soeda H; Katayama Y Neurosci Lett; 1995 Dec; 202(1-2):25-8. PubMed ID: 8787822 [TBL] [Abstract][Full Text] [Related]
18. Endothelial cell plasma membrane obtained by chemically induced vesiculation. Moldovan NI; Radu AN; Simionescu N Exp Cell Res; 1987 Jun; 170(2):499-510. PubMed ID: 3595739 [TBL] [Abstract][Full Text] [Related]
19. Mammalian myosin I alpha is concentrated near the plasma membrane in nerve growth cones. Lewis AK; Bridgman PC Cell Motil Cytoskeleton; 1996; 33(2):130-50. PubMed ID: 8635202 [TBL] [Abstract][Full Text] [Related]
20. Lectin labeling of sprouting neurons. III. Type-specific glycoconjugates on growth cones of different origin. Pfenninger KH; Maylié-Pfenninger MF; Friedman LB; Simkowitz P Dev Biol; 1984 Nov; 106(1):97-108. PubMed ID: 6548457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]