BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 8491262)

  • 1. Evoked changes of membrane potential in guinea pig sensory neocortical slices: an analysis with voltage-sensitive dyes and a fast optical recording method.
    Albowitz B; Kuhnt U
    Exp Brain Res; 1993; 93(2):213-25. PubMed ID: 8491262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The contribution of intracortical connections to horizontal spread of activity in the neocortex as revealed by voltage sensitive dyes and a fast optical recording method.
    Albowitz B; Kuhnt U
    Eur J Neurosci; 1993 Oct; 5(10):1349-59. PubMed ID: 8275234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Components of field potentials evoked by white matter stimulation in isolated slices of primary visual cortex: spatial distributions and synaptic order.
    Langdon RB; Sur M
    J Neurophysiol; 1990 Nov; 64(5):1484-501. PubMed ID: 1980927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials.
    Mitzdorf U; Singer W
    Exp Brain Res; 1978 Nov; 33(3-4):371-94. PubMed ID: 215431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apical dendritic depolarizations and field interactions evoked by stimulation of afferent inputs to rat hippocampal CA1 pyramidal cells.
    Turner RW; Richardson TL
    Neuroscience; 1991; 42(1):125-35. PubMed ID: 1861771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term depression in rat visual cortex is associated with a lower rise of postsynaptic calcium than long-term potentiation.
    Yasuda H; Tsumoto T
    Neurosci Res; 1996 Feb; 24(3):265-74. PubMed ID: 8815446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus-induced patterns of bioelectric activity in human neocortical tissue recorded by a voltage sensitive dye.
    Straub H; Kuhnt U; Höhling JM; Köhling R; Gorji A; Kuhlmann D; Tuxhorn I; Ebner A; Wolf P; Pannek HW; Lahl R; Speckmann EJ
    Neuroscience; 2003; 121(3):587-604. PubMed ID: 14568020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical recording of epileptiform voltage changes in the neocortical slice.
    Albowitz B; Kuhnt U; Ehrenreich L
    Exp Brain Res; 1990; 81(2):241-56. PubMed ID: 2397755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical responses evoked by white matter stimulation in rat visual cortical slices and their relation to neural activities.
    Tanifuji M; Yamanaka A; Sunaba R; Terakawa S; Toyama K
    Brain Res; 1996 Oct; 738(1):83-95. PubMed ID: 8949930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminar analysis of the origin of the various components of evoked potentials in slices of rat sensorimotor cortex.
    Abbes S; Louvel J; Lamarche M; Pumain R
    Electroencephalogr Clin Neurophysiol; 1991; 80(4):310-20. PubMed ID: 1713842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate receptors at parallel fiber synapses in the dorsal cochlear nucleus.
    Manis PB; Molitor SC
    J Neurophysiol; 1996 Sep; 76(3):1639-56. PubMed ID: 8890282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
    Miyakawa H; Lev-Ram V; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1178-89. PubMed ID: 1359027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient synaptic potentiation in the visual cortex. I. Cellular mechanisms.
    Harsanyi K; Friedlander MJ
    J Neurophysiol; 1997 Mar; 77(3):1269-83. PubMed ID: 9084595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spread of epileptiform potentials in the neocortical slice: recordings with voltage-sensitive dyes.
    Albowitz B; Kuhnt U
    Brain Res; 1993 Dec; 631(2):329-33. PubMed ID: 8131062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological elucidation of pathways of intrinsic horizontal connections in rat visual cortex.
    Ichinose T; Murakoshi T
    Neuroscience; 1996 Jul; 73(1):25-37. PubMed ID: 8783227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons.
    Callaway JC; Ross WN
    J Neurophysiol; 1997 Jan; 77(1):145-52. PubMed ID: 9120555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Action potential initiation and propagation in rat neocortical pyramidal neurons.
    Stuart G; Schiller J; Sakmann B
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):617-32. PubMed ID: 9457640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate-mediated slow synaptic currents in neonatal rat deep dorsal horn neurons in vitro.
    Miller BA; Woolf CJ
    J Neurophysiol; 1996 Sep; 76(3):1465-76. PubMed ID: 8890267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic modification of parallel fibre-Purkinje cell transmission in in vitro guinea-pig cerebellar slices.
    Sakurai M
    J Physiol; 1987 Dec; 394():463-80. PubMed ID: 2832595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of distal and proximal dendritic synapses on CAi pyramids in guinea-pig hippocampal slices in vitro.
    Andersen P; Silfvenius H; Sundberg SH; Sveen O
    J Physiol; 1980 Oct; 307():273-99. PubMed ID: 7205666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.