These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 849131)

  • 1. Voice controlled wheelchair.
    Clark JA; Roemer RB
    Arch Phys Med Rehabil; 1977 Apr; 58(4):169-75. PubMed ID: 849131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next generation autonomous wheelchair control.
    Benson J; Barrett S
    Biomed Sci Instrum; 2005; 41():283-8. PubMed ID: 15850119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A voice controlled powered wheelchair and environmental control system for the severely disabled.
    Youdin M; Sell GH; Reich T; Clagnaz M; Louie H; Kolwicz R
    Med Prog Technol; 1980 Jun; 7(2-3):139-43. PubMed ID: 7393174
    [No Abstract]   [Full Text] [Related]  

  • 4. Voice control of a powered wheelchair.
    Simpson RC; Levine SP
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):122-5. PubMed ID: 12236450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a wheelchair virtual driving environment: trials with subjects with traumatic brain injury.
    Spaeth DM; Mahajan H; Karmarkar A; Collins D; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2008 May; 89(5):996-1003. PubMed ID: 18452751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voice controlled wheelchairs: fine control by humming.
    Peixoto N; Nik HG; Charkhkar H
    Comput Methods Programs Biomed; 2013 Oct; 112(1):156-65. PubMed ID: 23871690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power wheelchair range testing and energy consumption during fatigue testing.
    Cooper RA; VanSickle DP; Albright SJ; Stewart KJ; Flannery M; Robertson RN
    J Rehabil Res Dev; 1995 Oct; 32(3):255-63. PubMed ID: 8592297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an inexpensive environmental remote control system for a quadriplegic individual.
    Patterson PE
    Biomed Sci Instrum; 1995; 31():275-80. PubMed ID: 7654977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing back displacement in the powered reclining wheelchair.
    Warren CG; Ko M; Smith C; Imre JV
    Arch Phys Med Rehabil; 1982 Sep; 63(9):447-9. PubMed ID: 7115048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of virtual reality technology in the assessment and training of inexperienced powered wheelchair users.
    Harrison A; Derwent G; Enticknap A; Rose FD; Attree EA
    Disabil Rehabil; 2002 Jul 20-Aug 15; 24(11-12):599-606. PubMed ID: 12182799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a pushrim-activated, power-assisted wheelchair.
    Cooper RA; Fitzgerald SG; Boninger ML; Prins K; Rentschler AJ; Arva J; O'connor TJ
    Arch Phys Med Rehabil; 2001 May; 82(5):702-8. PubMed ID: 11346854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared wheelchair controls.
    Choate MJ
    Biomed Sci Instrum; 1990; 26():107-9. PubMed ID: 2334752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eye and Voice-Controlled Human Machine Interface System for Wheelchairs Using Image Gradient Approach.
    Anwer S; Waris A; Sultan H; Butt SI; Zafar MH; Sarwar M; Niazi IK; Shafique M; Pujari AN
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32993047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adequacy of power wheelchair control interfaces for persons with severe disabilities: a clinical survey.
    Fehr L; Langbein WE; Skaar SB
    J Rehabil Res Dev; 2000; 37(3):353-60. PubMed ID: 10917267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and evaluation of head unit for wheelchair control by quadriplegic patients.
    Lozac'h Y; Gosselin G; Sherman ED; Gingras G
    Can Med Assoc J; 1976 Sep; 115(5):429-32. PubMed ID: 953917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health.
    van der Woude LH; de Groot S; Janssen TW
    Med Eng Phys; 2006 Nov; 28(9):905-15. PubMed ID: 16504565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheelchair Neuro Fuzzy Control and Tracking System Based on Voice Recognition.
    Abdulghani MM; Al-Aubidy KM; Ali MM; Hamarsheh QJ
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participatory design in the development of the wheelchair convoy system.
    Sharma V; Simpson RC; LoPresti EF; Mostowy C; Olson J; Puhlman J; Hayashi S; Cooper RA; Konarski E; Kerley B
    J Neuroeng Rehabil; 2008 Jan; 5():1. PubMed ID: 18171465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.