BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 8491784)

  • 1. Regulation of in vitro capillary tube formation by anti-integrin antibodies.
    Gamble JR; Matthias LJ; Meyer G; Kaur P; Russ G; Faull R; Berndt MC; Vadas MA
    J Cell Biol; 1993 May; 121(4):931-43. PubMed ID: 8491784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels.
    Bach TL; Barsigian C; Chalupowicz DG; Busler D; Yaen CH; Grant DS; Martinez J
    Exp Cell Res; 1998 Feb; 238(2):324-34. PubMed ID: 9473340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. B1 integrin activation inhibits in vitro tube formation: effects on cell migration, vacuole coalescence and lumen formation.
    Gamble J; Meyer G; Noack L; Furze J; Matthias L; Kovach N; Harlant J; Vadas M
    Endothelium; 1999; 7(1):23-34. PubMed ID: 10599558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fibrin II induces endothelial cell capillary tube formation.
    Chalupowicz DG; Chowdhury ZA; Bach TL; Barsigian C; Martinez J
    J Cell Biol; 1995 Jul; 130(1):207-15. PubMed ID: 7540617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting.
    Korff T; Augustin HG
    J Cell Sci; 1999 Oct; 112 ( Pt 19)():3249-58. PubMed ID: 10504330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of antisense to integrin subunit beta 3 inhibits microvascular endothelial cell capillary tube formation in fibrin.
    Dallabrida SM; De Sousa MA; Farrell DH
    J Biol Chem; 2000 Oct; 275(41):32281-8. PubMed ID: 10922359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Signaling via fibroblast growth factor receptor-1 is dependent on extracellular matrix in capillary endothelial cell differentiation.
    Kanda S; Tomasini-Johansson B; Klint P; Dixelius J; Rubin K; Claesson-Welsh L
    Exp Cell Res; 1999 Apr; 248(1):203-13. PubMed ID: 10094827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lumen formation during angiogenesis in vitro involves phagocytic activity, formation and secretion of vacuoles, cell death, and capillary tube remodelling by different populations of endothelial cells.
    Meyer GT; Matthias LJ; Noack L; Vadas MA; Gamble JR
    Anat Rec; 1997 Nov; 249(3):327-40. PubMed ID: 9372166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures.
    Kubota Y; Kleinman HK; Martin GR; Lawley TJ
    J Cell Biol; 1988 Oct; 107(4):1589-98. PubMed ID: 3049626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels.
    Goto F; Goto K; Weindel K; Folkman J
    Lab Invest; 1993 Nov; 69(5):508-17. PubMed ID: 8246443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrin and Rho GTPase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices.
    Davis GE; Bayless KJ
    Microcirculation; 2003 Jan; 10(1):27-44. PubMed ID: 12610662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alpha 2 beta 1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix.
    Davis GE; Camarillo CW
    Exp Cell Res; 1996 Apr; 224(1):39-51. PubMed ID: 8612690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrin alphavbeta3-RGDS interaction mediates fibrin-induced morphological changes of glomerular endothelial cells.
    Xu Q; Chen X; Fu B; Ye Y; Yu L; Wang J; Li W; Cheng Q
    Kidney Int; 1999 Oct; 56(4):1413-22. PubMed ID: 10504493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelial cell apoptosis in capillary network remodeling.
    Pollman MJ; Naumovski L; Gibbons GH
    J Cell Physiol; 1999 Mar; 178(3):359-70. PubMed ID: 9989782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a spontaneously transformed human endothelial cell line.
    Cockerill GW; Meyer G; Noack L; Vadas MA; Gamble JR
    Lab Invest; 1994 Oct; 71(4):497-509. PubMed ID: 7526034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible mechanisms of type I collagen-induced vascular tube formation.
    Jackson CJ; Jenkins K; Schrieber L
    EXS; 1992; 61():198-204. PubMed ID: 1617231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro.
    Salazar R; Bell SE; Davis GE
    Exp Cell Res; 1999 May; 249(1):22-32. PubMed ID: 10328950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VLA-2 mediates the interaction of collagen with endothelium during in vitro vascular tube formation.
    Jackson CJ; Knop A; Giles I; Jenkins K; Schrieber L
    Cell Biol Int; 1994 Sep; 18(9):859-67. PubMed ID: 7528076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events.
    Basson CT; Knowles WJ; Bell L; Albelda SM; Castronovo V; Liotta LA; Madri JA
    J Cell Biol; 1990 Mar; 110(3):789-801. PubMed ID: 2407741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-cell factor-4-dependent up-regulation of fibronectin is involved in fibroblast growth factor-2-induced tube formation by endothelial cells.
    Kanda S; Miyata Y; Kanetake H
    J Cell Biochem; 2005 Mar; 94(4):835-47. PubMed ID: 15578569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.