These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 8492166)
1. Electrophysiological evidence for a bisynaptic retinocerebellar pathway. Ariel M; Fan TX J Neurophysiol; 1993 Apr; 69(4):1323-30. PubMed ID: 8492166 [TBL] [Abstract][Full Text] [Related]
2. Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. Kogo N; Ariel M J Neurophysiol; 1997 Aug; 78(2):614-27. PubMed ID: 9307099 [TBL] [Abstract][Full Text] [Related]
3. Visual responses and connectivity in the turtle pretectum. Fan TX; Weber AE; Pickard GE; Faber KM; Ariel M J Neurophysiol; 1995 Jun; 73(6):2507-21. PubMed ID: 7666156 [TBL] [Abstract][Full Text] [Related]
4. Visual-response properties of units in the turtle cerebellar granular layer in vitro. Fan TX; Rosenberg AF; Ariel M J Neurophysiol; 1993 Apr; 69(4):1314-22. PubMed ID: 8492165 [TBL] [Abstract][Full Text] [Related]
5. Convergence of retinal W-cell and corticotectal input to cells of the cat superior colliculus. Berson DM J Neurophysiol; 1988 Dec; 60(6):1861-73. PubMed ID: 3236054 [TBL] [Abstract][Full Text] [Related]
6. Central trigeminal and posterior eighth nerve projections in the turtle Chrysemys picta studied in vitro. Herrick JL; Keifer J Brain Behav Evol; 1998; 51(4):183-201. PubMed ID: 9553692 [TBL] [Abstract][Full Text] [Related]
7. Electrophysiological evidence for a direct projection of direction-sensitive retinal ganglion cells to the turtle's accessory optic system. Rosenberg AF; Ariel M J Neurophysiol; 1991 May; 65(5):1022-33. PubMed ID: 1869903 [TBL] [Abstract][Full Text] [Related]
8. Mossy fiber responses evoked in the cerebellar flocculus of rabbits by stimulation of the optic pathway. Kyojimaekawa ; Toshiakitakeda ; Maekawa K; Takeda T Brain Res; 1975 Nov; 98(3):590-5. PubMed ID: 1182540 [No Abstract] [Full Text] [Related]
9. Synaptic integration in a model of cerebellar granule cells. Gabbiani F; Midtgaard J; Knöpfel T J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078 [TBL] [Abstract][Full Text] [Related]
10. Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. Davis KA; Miller RL; Young ED J Neurophysiol; 1996 Nov; 76(5):3012-24. PubMed ID: 8930251 [TBL] [Abstract][Full Text] [Related]
11. In vivo electrical stimulation of rabbit retina with a microfabricated array: strategies to maximize responses for prospective assessment of stimulus efficacy and biocompatibility. Rizzo JF; Goldbaum S; Shahin M; Denison TJ; Wyatt J Restor Neurol Neurosci; 2004; 22(6):429-43. PubMed ID: 15798362 [TBL] [Abstract][Full Text] [Related]
12. Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. Swadlow HA J Neurophysiol; 1995 Apr; 73(4):1584-99. PubMed ID: 7643169 [TBL] [Abstract][Full Text] [Related]
13. Vestibular unitary responses to visual stimulation in the rabbit. Kubo T; Matsunaga T; Igarashi M Acta Otolaryngol; 1979; 88(1-2):117-21. PubMed ID: 314222 [TBL] [Abstract][Full Text] [Related]
14. Visual cortical projections to the paraflocculus in the rat. An electrophysiologic study. Burne RA; Woodward DJ Exp Brain Res; 1983; 49(1):55-67. PubMed ID: 6861937 [TBL] [Abstract][Full Text] [Related]
15. Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Li L; Cao P; Sun M; Chai X; Wu K; Xu X; Li X; Ren Q Graefes Arch Clin Exp Ophthalmol; 2009 Mar; 247(3):349-61. PubMed ID: 18989689 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex. Chowdhury V; Morley JW; Coroneo MT J Clin Neurosci; 2005 Jun; 12(5):574-9. PubMed ID: 16051097 [TBL] [Abstract][Full Text] [Related]
17. In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation. Shah HA; Montezuma SR; Rizzo JF Exp Eye Res; 2006 Aug; 83(2):247-54. PubMed ID: 16750527 [TBL] [Abstract][Full Text] [Related]
18. Characterization in vivo of bilaterally branching pontocerebellar mossy fibre to Golgi cell inputs in the rat cerebellum. Holtzman T; Cerminara NL; Edgley SA; Apps R Eur J Neurosci; 2009 Jan; 29(2):328-39. PubMed ID: 19077121 [TBL] [Abstract][Full Text] [Related]
19. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. Dubin MW; Cleland BG J Neurophysiol; 1977 Mar; 40(2):410-27. PubMed ID: 191574 [TBL] [Abstract][Full Text] [Related]
20. Direction tuning of individual retinal inputs to the turtle accessory optic system. Kogo N; Rubio DM; Ariel M J Neurosci; 1998 Apr; 18(7):2673-84. PubMed ID: 9502825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]