These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 849348)

  • 1. Fluorescence studies of membrane interactions of chlorpromazine and chlorimipramine.
    Elferink JG
    Biochem Pharmacol; 1977 Mar; 26(6):511-5. PubMed ID: 849348
    [No Abstract]   [Full Text] [Related]  

  • 2. A spectrofluorimetric study of the interaction of glycerol mono-oleate with human erythrocyte ghosts.
    Kennedy A; Rice-Evans C
    FEBS Lett; 1976 Oct; 69(1):45-50. PubMed ID: 992044
    [No Abstract]   [Full Text] [Related]  

  • 3. 1-Anilino-8-naphthalene sulfonate binding site on human erythrocyte membrane using fluorescence lifetime and polarization.
    Horie T; Sugiyama Y; Awazu S; Hanano M
    J Pharmacobiodyn; 1982 Feb; 5(2):73-80. PubMed ID: 7097479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of chlorpromazine with biological membranes. A photochemical study using spin labels.
    Leterrier F; Mendyk A; Viret J
    Biochem Pharmacol; 1976 Nov; 25(22):2469-74. PubMed ID: 186073
    [No Abstract]   [Full Text] [Related]  

  • 5. Disk to sphere transformation of erythrocyte induced by 1-anilino-8-naphthalene sulfonate (ANS). II. Quantitative study on adsorption of ANS by whole erythrocyte and by ghost membrane.
    Yoshida S
    Chem Pharm Bull (Tokyo); 1976 Dec; 24(12):3039-44. PubMed ID: 1022346
    [No Abstract]   [Full Text] [Related]  

  • 6. The asymmetric distribution of chlorpromazine and its quaternary analogue over the erythrocyte membrane.
    Elfernik JG
    Biochem Pharmacol; 1977 Dec; 26(24):2411-6. PubMed ID: 597329
    [No Abstract]   [Full Text] [Related]  

  • 7. Interactions of chlorpromazine and imipramine with artificial membranes investigated by equilibrium dialysis, dual-wavelength photometry, and fluorimetry.
    Römer J; Bickel MH
    Biochem Pharmacol; 1979 Mar; 28(6):799-805. PubMed ID: 454478
    [No Abstract]   [Full Text] [Related]  

  • 8. Human erythrocyte ghosts: relationship between membrane permeability and binding kinetics of the fluorescent probe 1-anilinonaphthalene-8-sulphonate.
    Radda GK; Smith DS
    Biochim Biophys Acta; 1973 Aug; 318(2):197-204. PubMed ID: 4745317
    [No Abstract]   [Full Text] [Related]  

  • 9. N-Dealkylation of chlorpromazine and chlorimipramine in normal volunteers.
    Pietro Sgaragli G; Corte LD
    Psychopharmacol Bull; 1984; 20(1):165-7. PubMed ID: 6718642
    [No Abstract]   [Full Text] [Related]  

  • 10. Pharmacokinetics of chlorimipramine, chlorpromazine and their N-dealkylated metabolites in plasma of healthy volunteers after a single oral dose of the parent compounds.
    Della Corte L; Valoti M; Palmi M; Giovannini MG; Sgaragli GP
    J Pharm Pharmacol; 1993 Sep; 45(9):825-9. PubMed ID: 7903373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of human erythrocyte ghosts or liposomes with polyethylene glycol detected by fluorescence polarization.
    Ohno H; Sakai T; Tsuchida E; Honda K; Sasakawa S
    Biochem Biophys Res Commun; 1981 Sep; 102(1):426-31. PubMed ID: 6895468
    [No Abstract]   [Full Text] [Related]  

  • 12. Fluorescence studies of the beta-adrenergic receptor topology.
    Cherksey BD; Murphy RB; Zadunaisky JA
    Biochemistry; 1981 Jul; 20(15):4278-83. PubMed ID: 6269586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Recording of surface charge changes in erythrocyte and model membranes by means of fluorescent probes].
    Morozova GI; Dobretsov GE; Barenboĭm GM
    Biofizika; 1982; 27(2):329-31. PubMed ID: 7074162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Uptake of carbon 11-labeled chlorimipramine by cerebral structures during chronic alveolar hypoventilation].
    Bouchoucha MS; Huchon G; Akoun G; Maziere M; Berger G; Verhast M; Comar D
    Sem Hop; 1977 Nov; 53(39):2197-8. PubMed ID: 204032
    [No Abstract]   [Full Text] [Related]  

  • 15. Kinetic study of the interaction of oxy- and deoxyhemoglobins with the erythrocyte membrane.
    Shaklai N; Sharma VS
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7147-51. PubMed ID: 6938961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of two spin-labelled derivatives of chlorpromazine to human erythrocytes.
    Olivier JL; Chachaty C; Wolf C; Daveloose D; Bereziat G
    Biochem J; 1989 Dec; 264(3):633-41. PubMed ID: 2559714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence labeling of the human erythrocyte anion transport system.
    Dissing S; Jesaitis AJ; Fortes PA
    Biochim Biophys Acta; 1979 May; 553(1):66-83. PubMed ID: 454588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of a peripheral protein of the erythrocyte membrane, band 4.1, with phosphatidylserine-containing liposomes and erythrocyte inside-out vesicles.
    Sato SB; Ohnishi S
    Eur J Biochem; 1983 Jan; 130(1):19-25. PubMed ID: 6297895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of ozone on cell membrane protein fluorescence. I. In vitro studies utilizing the red cell membrane.
    Goldstein BD; McDonagh EM
    Environ Res; 1975 Apr; 9(2):179-86. PubMed ID: 1140179
    [No Abstract]   [Full Text] [Related]  

  • 20. Reconstitution of D-glucose transport in vesicles composed of lipids and a partially purified protein from the human erythrocyte membrane.
    Zala CA; Kahlenberg A
    Biochem Biophys Res Commun; 1976 Oct; 72(3):866-74. PubMed ID: 985523
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.