These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8493912)

  • 1. Properties and stereoselectivity of carbonyl reductases involved in the ketone reduction of warfarin and analogues.
    Hermans JJ; Thijssen HH
    Adv Exp Med Biol; 1993; 328():351-60. PubMed ID: 8493912
    [No Abstract]   [Full Text] [Related]  

  • 2. The in vitro ketone reduction of warfarin and analogues. Substrate stereoselectivity, product stereoselectivity and species differences.
    Hermans JJ; Thijssen HH
    Biochem Pharmacol; 1989 Oct; 38(19):3365-70. PubMed ID: 2818630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on a ketone reductase in human and rat liver and kidney soluble fraction using warfarin as a substrate.
    Moreland TA; Hewick DS
    Biochem Pharmacol; 1975 Nov; 24(21):1953-7. PubMed ID: 1212245
    [No Abstract]   [Full Text] [Related]  

  • 4. Stereoselective acetonyl side chain reduction of warfarin and analogs. Partial characterization of two cytosolic carbonyl reductases.
    Hermans JJ; Thijssen HH
    Drug Metab Dispos; 1992; 20(2):268-74. PubMed ID: 1352220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases.
    Malátková P; Sokolová S; Chocholoušová Havlíková L; Wsól V
    Biochem Pharmacol; 2016 Jun; 109():83-90. PubMed ID: 27055738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver.
    Ohara H; Miyabe Y; Deyashiki Y; Matsuura K; Hara A
    Biochem Pharmacol; 1995 Jul; 50(2):221-7. PubMed ID: 7632166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereospecific reduction of haloperidol in human tissues.
    Eyles DW; Pond SM
    Biochem Pharmacol; 1992 Sep; 44(5):867-71. PubMed ID: 1530656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereospecific Metabolism of
    Barnette DA; Johnson BP; Pouncey DL; Nshimiyimana R; Desrochers LP; Goodwin TE; Miller GP
    Drug Metab Dispos; 2017 Sep; 45(9):1000-1007. PubMed ID: 28646078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of experimental kidney disease on the functional expression of hepatic reductases.
    Alshogran OY; Naud J; Ocque AJ; Leblond FA; Pichette V; Nolin TD
    Drug Metab Dispos; 2015 Jan; 43(1):100-6. PubMed ID: 25332430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dihydromorphinine ketone reductases.
    Pollock SH
    Life Sci; 1975 Aug; 17(3):465-75. PubMed ID: 51460
    [No Abstract]   [Full Text] [Related]  

  • 11. The influence of cytochrome P-450 inducers on carbonyl reduction in mouse liver.
    Maser E; Hahnemann B; Legrum W; Oppermann U; Netter KJ
    Arch Toxicol Suppl; 1991; 14():188-92. PubMed ID: 1805730
    [No Abstract]   [Full Text] [Related]  

  • 12. Isolation and characterization of rabbit liver xenobiotic carbonyl reductases.
    Felsted RL; Richter DR; Jones DM; Bachur NR
    Biochem Pharmacol; 1980 Jun; 29(11):1503-16. PubMed ID: 6994746
    [No Abstract]   [Full Text] [Related]  

  • 13. Reduction of acetohexamide by rabbit heart cytosol.
    Imamura Y; Kojima Y; Otagiri M
    J Pharmacobiodyn; 1986 Jan; 9(1):110-1. PubMed ID: 3519920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of enantiomerically enriched drug precursors and an insect pheromone via reduction of ketones using commercially available carbonyl reductase screening kit "Chiralscreen® OH".
    Nagai T; Sakurai S; Natori N; Hataoka M; Kinoshita T; Inoue H; Hanaya K; Shoji M; Sugai T
    Bioorg Med Chem; 2018 Apr; 26(7):1304-1313. PubMed ID: 28506583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective reduction of acetohexamide in cytosol of rabbit liver.
    Imamura Y; Kojima Y; Higuchi T; Akita H; Oishi T; Otagiri M
    J Pharmacobiodyn; 1989 Dec; 12(12):731-5. PubMed ID: 2699749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stereoselective high-affinity reduction of ketonic nortriptyline metabolites and of ketotifen by aldo-keto reductases from human liver.
    Breyer-Pfaff U; Nill K
    Adv Exp Med Biol; 1999; 463():473-80. PubMed ID: 10352721
    [No Abstract]   [Full Text] [Related]  

  • 17. Aldehyde reductases: enzymes in search of a function.
    Turner AJ
    Prog Clin Biol Res; 1982; 114():183-95. PubMed ID: 6761706
    [No Abstract]   [Full Text] [Related]  

  • 18. Purification and catalytic properties of a tetrameric carbonyl reductase from rabbit heart.
    Imamura Y; Migita T; Otagiri M; Choshi T; Hibino S
    J Biochem; 1999 Jan; 125(1):41-7. PubMed ID: 9880795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of four rabbit aldo-keto reductases featuring broad substrate specificity for xenobiotic and endogenous carbonyl compounds: relationship with multiple forms of drug ketone reductases.
    Endo S; Matsunaga T; Arai Y; Ikari A; Tajima K; El-Kabbani O; Yamano S; Hara A; Kitade Y
    Drug Metab Dispos; 2014 Apr; 42(4):803-12. PubMed ID: 24510382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis.
    Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D
    Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.