These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 849438)

  • 1. Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation.
    Borejdo J; Putnam S
    Biochim Biophys Acta; 1977 Mar; 459(3):578-95. PubMed ID: 849438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of fluorescence polarization to observe changes in attitude of S-1 moieties in muscle fibers.
    Nihei T; Mendelson RA; Botts J
    Biophys J; 1974 Mar; 14(3):236-42. PubMed ID: 4132695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence polarization transients from rhodamine isomers on the myosin regulatory light chain in skeletal muscle fibers.
    Hopkins SC; Sabido-David C; Corrie JE; Irving M; Goldman YE
    Biophys J; 1998 Jun; 74(6):3093-110. PubMed ID: 9635763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probe studies of the MgADP state of muscle cross-bridges: microscopic and wavelength-dependent fluorescence polarization from 1,5-IAEDANS-labeled myosin subfragment 1 decorating muscle fibers.
    Ajtai K; Burghardt TP
    Biochemistry; 1987 Jul; 26(14):4517-23. PubMed ID: 3663603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angles of fluorescently labelled myosin heads and actin monomers in contracting and rigor stained muscle fiber.
    Yanagida T
    Adv Exp Med Biol; 1984; 170():397-411. PubMed ID: 6430042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization of tryptophan fluorescence from single striated muscle fibers. A molecular probe of contractile state.
    Dos Remedios CG; Millikan RG; Morales MF
    J Gen Physiol; 1972 Jan; 59(1):103-20. PubMed ID: 4332133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation changes in myosin regulatory light chains following photorelease of ATP in skinned muscle fibers.
    Allen TS; Ling N; Irving M; Goldman YE
    Biophys J; 1996 Apr; 70(4):1847-62. PubMed ID: 8785345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tension development in skinned glycerinated rabbit psoas fiber segments irrigated with soluble myosin fragments.
    Borejdo J; Oplatka A
    Biochim Biophys Acta; 1976 Jul; 440(1):241-58. PubMed ID: 132970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigor cross-bridges bind to two actin monomers in thin filaments of rabbit psoas muscle.
    Xiao M; Andreev OA; Borejdo J
    J Mol Biol; 1995 Apr; 248(2):294-307. PubMed ID: 7739041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of spin-labeled light chain-2 exchanged onto myosin cross-bridges in glycerinated muscle fibers.
    Hambly B; Franks K; Cooke R
    Biophys J; 1991 Jan; 59(1):127-38. PubMed ID: 1849755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of spin-labeled myosin heads in glycerinated muscle fibers.
    Thomas DD; Cooke R
    Biophys J; 1980 Dec; 32(3):891-906. PubMed ID: 6266539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction.
    Pemrick SM; Edwards C
    J Gen Physiol; 1974 Nov; 64(5):551-67. PubMed ID: 4443791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction.
    Borejdo J; Putnam S; Morales MF
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6346-50. PubMed ID: 160564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The site of force generation in muscle contraction as deduced from fluorescence polarization studies.
    Nihel T; Mendelson RA; Botts J
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):274-7. PubMed ID: 4521799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of ATP concentration and pH on rigor tension development and dissociation of rigor complex in glycerinated rabbit psoas muscle fiber.
    Izumi K; Ito T; Fukazawa T
    Biochim Biophys Acta; 1981 Dec; 678(3):364-72. PubMed ID: 7317457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative studies on the polarization optical properties of striated muscle. I. Birefringence changes of rabbit psoas muscle in the transition from rigor to relaxed state.
    Toylor DL
    J Cell Biol; 1976 Mar; 68(3):497-511. PubMed ID: 16016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-linking studies related to the location of the rigor compliance in glycerinated rabbit psoas fibers: is the SII portion of the cross-bridge compliant?
    Tawada K; Kimura M
    Adv Exp Med Biol; 1984; 170():385-96. PubMed ID: 6741707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The binding of calcium to glycerinated muscle fibers in rigor. The effect of filament overlap.
    Fuchs F
    Biochim Biophys Acta; 1977 Apr; 491(2):523-31. PubMed ID: 403955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state fluorescence polarization studies of the orientation of myosin regulatory light chains in single skeletal muscle fibers using pure isomers of iodoacetamidotetramethylrhodamine.
    Sabido-David C; Brandmeier B; Craik JS; Corrie JE; Trentham DR; Irving M
    Biophys J; 1998 Jun; 74(6):3083-92. PubMed ID: 9635762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perhexiline increases calcium-activated force in skinned psoas fibres by raising calcium affinity of troponin-C.
    Morano I; Isac M; Bletz C; Wojciechowski R; Rüegg JC
    Biomed Biochim Acta; 1989; 48(5-6):S329-34. PubMed ID: 2757606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.