These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 849438)

  • 21. Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain.
    Berger CL; Craik JS; Trentham DR; Corrie JE; Goldman YE
    Biophys J; 1996 Dec; 71(6):3330-43. PubMed ID: 8968602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of vanadate on Ca++-activation in skeletal muscle].
    Son'kin BIa; Bukatina AE
    Biofizika; 1983; 28(5):886-8. PubMed ID: 6556917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraction and functional reformation of thick filaments in chemically skinned molluscan catch muscle fibers.
    Tanaka M; Tanaka H
    J Biochem; 1979 Feb; 85(2):535-40. PubMed ID: 422545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The disappearance of the dependence of actin-myosin interaction on the phosphorylation of myosin light chains in the "freezing" of the structure of heavy meromyosin by a bifunctional reagent].
    Borovikov IuS; Szczesna D; Khoroshev MI; Kakol I
    Tsitologiia; 1990; 32(5):481-8. PubMed ID: 2275017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.
    Kawai M; Zhao Y
    Biophys J; 1993 Aug; 65(2):638-51. PubMed ID: 8218893
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle.
    Metzger JM; Greaser ML; Moss RL
    J Gen Physiol; 1989 May; 93(5):855-83. PubMed ID: 2661721
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluorescent probes of the orientation of myosin regulatory light chains in relaxed, rigor, and contracting muscle.
    Ling N; Shrimpton C; Sleep J; Kendrick-Jones J; Irving M
    Biophys J; 1996 Apr; 70(4):1836-46. PubMed ID: 8785344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myosin aggregates as a requirement for contraction and a proposal to the mechanism of contraction of actomyosin systems.
    Hayashi T; Maruyama K
    J Biochem; 1975 Nov; 78(5):1031-8. PubMed ID: 765324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of negative mechanical stress on the orientation of myosin cross-bridges in muscle fibers.
    Burghardt TP; Ajtai K
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5366-70. PubMed ID: 2526336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The contraction of "ghost" myofibrils and glycerinated muscle fibers irrigated with heavy meromyosin subfragment-1.
    Oplatka A; Gadasi H; Borejdo J
    Biochem Biophys Res Commun; 1974 Jun; 58(4):905-12. PubMed ID: 4276130
    [No Abstract]   [Full Text] [Related]  

  • 31. Influence of Mg2+ and Ca2+ bound to 1,5-IAEDANS-labeled phosphorylated and dephosphorylated heavy meromyosin complexed with F-actin on polarized fluorescence of the fluorophore.
    Borovikov YuS ; Wrotek M; Aksenova NB; Lebedeva NN; Kakol I
    FEBS Lett; 1987 Nov; 223(2):409-12. PubMed ID: 3311814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tension Recovery following Ramp-Shaped Release in High-Ca and Low-Ca Rigor Muscle Fibers: Evidence for the Dynamic State of AMADP Myosin Heads in the Absence of ATP.
    Sugi H; Yamaguchi M; Ohno T; Kobayashi T; Chaen S; Okuyama H
    PLoS One; 2016; 11(9):e0162003. PubMed ID: 27583360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding of heavy meromyosin and subfragment-1 to thin filaments in myofibrils and single muscle fibers.
    Borejdo J; Assulin O
    Biochemistry; 1980 Oct; 19(21):4913-21. PubMed ID: 7000187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Myosin-free ghosts of single fibers and an attempt to re-form myosin filaments in the ghost fibers.
    Tawada K; Yoshida A; Morita K
    J Biochem; 1976 Jul; 80(1):121-7. PubMed ID: 786979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Length-dependence of actin-myosin interaction in skinned cardiac muscle fibers in rigor.
    Fuchs F; Wang YP
    J Mol Cell Cardiol; 1997 Dec; 29(12):3267-74. PubMed ID: 9441832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of two orientations from rigor cross-bridges in glycerinated muscle fibers.
    Ajtai K; Burghardt TP
    Biochemistry; 1986 Oct; 25(20):6203-7. PubMed ID: 3790516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca2+ dependence of tension and ADP production in segments of chemically skinned muscle fibers.
    Levy RM; Umazume Y; Kushmerick MJ
    Biochim Biophys Acta; 1976 May; 430(2):352-65. PubMed ID: 132189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motion of myosin cross-bridges in skeletal muscle fibers studied by time-resolved fluorescence anisotropy decay.
    Burghardt TP; Thompson NL
    Biochemistry; 1985 Jul; 24(14):3731-5. PubMed ID: 4041436
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for cross-bridge order in contraction of glycerinated skeletal muscle.
    Burghardt TP; Ando T; Borejdo J
    Proc Natl Acad Sci U S A; 1983 Dec; 80(24):7515-9. PubMed ID: 6584869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Initiation of active contraction by photogeneration of adenosine-5'-triphosphate in rabbit psoas muscle fibres.
    Goldman YE; Hibberd MG; Trentham DR
    J Physiol; 1984 Sep; 354():605-24. PubMed ID: 6481646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.