These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 849463)

  • 41. Conformational changes and association of chemically modified chymotrypsins.
    Neet KE; Sackrison KM; Ainslie GR; Barritt LC
    Arch Biochem Biophys; 1974 Feb; 160(2):569-76. PubMed ID: 4831628
    [No Abstract]   [Full Text] [Related]  

  • 42. Structure of single-stranded virus RNA in situ. II. Optical activity of five tobacco mosaic-like viruses and their components.
    Dobrov EN; Kust SV; Yakovleva OA; Tikchonenko TI
    Biochim Biophys Acta; 1977 Apr; 475(4):623-37. PubMed ID: 856278
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The chemical modification of tryptophan residues of alpha-mannosidase from Phaseolus vulgaris.
    Paus E
    Biochim Biophys Acta; 1978 Apr; 533(2):446-56. PubMed ID: 417737
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of the cysteine residue of streptococcal dihydrofolate reducatse.
    Warwick PE; Freisheim JH
    Biochemistry; 1975 Feb; 14(4):664-8. PubMed ID: 1115767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diphtheria toxin: the effect of nitration and reductive methylation on enzymatic activity and toxicity.
    Beugnier N; Zanen J
    Biochim Biophys Acta; 1977 Jan; 490(1):225-34. PubMed ID: 65185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; GariƩpy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chromophoric labels in proteins. I. Optical and luminescent properties of nitrochymotrypsin and nitrochymotrypsinogen.
    Surovaya AN; Slobodyanskaya EM; Kozlov LV; Kogan GA; Antonov VK
    Mol Biol; 1972; 6(1):85-90. PubMed ID: 5086744
    [No Abstract]   [Full Text] [Related]  

  • 48. Biophysical properties of diphtheria toxin fragment B in correlation to its binding ability to eukaryotic cell membranes [proceedings].
    Lambotte P; Falmagne P; Capiau C; Ruysschaert JM; Dirkx J
    Arch Int Physiol Biochim; 1979 Dec; 87(5):1041-2. PubMed ID: 94807
    [No Abstract]   [Full Text] [Related]  

  • 49. Spectrophotometric estimation of protein concentration in the presence of tryptophan modified by 2-hydroxy-5-nitrobenzyl bromide.
    Malin EL; Greenberg R; Farrell HM
    Anal Biochem; 1985 Feb; 144(2):356-61. PubMed ID: 3922238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissociation of bovine liver catalase into subunits on acetylation.
    Furuta H; Hachimori A; Ota Y; Samejima T
    J Biochem; 1974 Sep; 76(3):481-91. PubMed ID: 4474164
    [No Abstract]   [Full Text] [Related]  

  • 51. Photoaffinity labeling of diphtheria toxin fragment A with NAD: structure of the photoproduct at position 148.
    Carroll SF; McCloskey JA; Crain PF; Oppenheimer NJ; Marschner TM; Collier RJ
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7237-41. PubMed ID: 3864158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conformational analysis of globular proteins by optical rotatory dispersion.
    Bozhkov VM
    Mol Biol; 1974 Jan; 7(4):451-7. PubMed ID: 4363344
    [No Abstract]   [Full Text] [Related]  

  • 53. The effect of tryptophan modification on the structure and function of a sea snake neurotoxin.
    Allen M; Tu AT
    Mol Pharmacol; 1985 Jan; 27(1):79-85. PubMed ID: 3917546
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histidine-21 is involved in diphtheria toxin NAD+ binding.
    Papini E; Schiavo G; Rappuoli R; Montecucco C
    Toxicon; 1990; 28(6):631-5. PubMed ID: 2402759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Accessibility of tryptophan residues in immunoglobulin M molecule as an indicator of its conformational variability].
    Lapuk VA; Chukhrova AI; Khatiashvili NM; Shmakova FV; Kaverzneva ED; Timofeev VP
    Biokhimiia; 1989 Dec; 54(12):1956-64. PubMed ID: 2633801
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An essential tryptophan residue for rabbit muscle creatine kinase.
    Zhou HM; Tsou CL
    Biochim Biophys Acta; 1985 Jul; 830(1):59-63. PubMed ID: 4016129
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical modification studies on Abrus agglutinin. Involvement of tryptophan residues in sugar binding.
    Patanjali SR; Swamy MJ; Anantharam V; Khan MI; Surolia A
    Biochem J; 1984 Feb; 217(3):773-81. PubMed ID: 6424652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational changes in the progesterone binding globulin-progesterone complex.
    Stroupe SD; Westphal U
    Biochemistry; 1975 Jul; 14(15):3296-300. PubMed ID: 167822
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for one essential tryptophan residue at the active site of relaxin.
    Schwabe C; Braddon SA
    Biochem Biophys Res Commun; 1976 Feb; 68(4):1126-32. PubMed ID: 1267770
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.